Multi-layer perceptron (MLP) neural network technique for offline handwritten Gurmukhi character recognition

Machine vision researchers are working on the area of recognition of handwritten or printed text from scanned images for the purpose of digitizing documents and for reducing the errorless data entry cost. The classic difficulty of being able to correctly recognize language symbols is the complexity...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE International Conference on Computational Intelligence and Computing Research pp. 1 - 5
Main Authors Singh, Gurpreet, Sachan, Manoj
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text
ISBN1479939749
9781479939749
DOI10.1109/ICCIC.2014.7238334

Cover

Abstract Machine vision researchers are working on the area of recognition of handwritten or printed text from scanned images for the purpose of digitizing documents and for reducing the errorless data entry cost. The classic difficulty of being able to correctly recognize language symbols is the complexity and the irregularity among the pictorial representation of characters due to variation in writing styles, size of symbols etc. Character recognition process depends on, how the input data is given to the system. Input data may be categorized as Online data or Offline data. Both the forms of data input have their own issues. In this paper, we are focusing on the Offline Gurmukhi character recognition from text image. There are lot of complexities associated with Gurmukhi Script. In this paper, we present a technique based on Multi Layer Perceptron (MLP) Neural Network model. Here we consider isolated handwritten Gurmukhi characters for recognition. MLP is used because it uses generalized delta learning rules and easily gets trained in less number of iterations. The proposed method in this paper detect graphical symbols by identifying lines and characters from the image. After that it analyzes the symbols by training the network using feed forward topology for a set of desired unicode characters. We achieve the performance rate of proposed system maximum up to 98.96% for recognition of symbols by using MLP neural network.
AbstractList Machine vision researchers are working on the area of recognition of handwritten or printed text from scanned images for the purpose of digitizing documents and for reducing the errorless data entry cost. The classic difficulty of being able to correctly recognize language symbols is the complexity and the irregularity among the pictorial representation of characters due to variation in writing styles, size of symbols etc. Character recognition process depends on, how the input data is given to the system. Input data may be categorized as Online data or Offline data. Both the forms of data input have their own issues. In this paper, we are focusing on the Offline Gurmukhi character recognition from text image. There are lot of complexities associated with Gurmukhi Script. In this paper, we present a technique based on Multi Layer Perceptron (MLP) Neural Network model. Here we consider isolated handwritten Gurmukhi characters for recognition. MLP is used because it uses generalized delta learning rules and easily gets trained in less number of iterations. The proposed method in this paper detect graphical symbols by identifying lines and characters from the image. After that it analyzes the symbols by training the network using feed forward topology for a set of desired unicode characters. We achieve the performance rate of proposed system maximum up to 98.96% for recognition of symbols by using MLP neural network.
Author Sachan, Manoj
Singh, Gurpreet
Author_xml – sequence: 1
  givenname: Gurpreet
  surname: Singh
  fullname: Singh, Gurpreet
  email: gurpreet32@gmail.com
  organization: SLIET, Longowal, India
– sequence: 2
  givenname: Manoj
  surname: Sachan
  fullname: Sachan, Manoj
  email: manojsachan@gmail.com
  organization: SLIET, Longowal, India
BookMark eNo1kLFOwzAUAI2AgZb-ACweYUiw49ixRxTREikVDN0rx3kmVlO7GEdV_55KlOl0yw03Qzc-eEDogZKcUqJemrpu6rwgtMyrgknGyiu0UJWkZaUUUxUX12j2L6W6Q-N6GpPLRn2CiA8QDRxSDB4_rdvPZ-xhino8Ix1D3OEEZvDuewJsQ8TB2tF5wIP2_TG6lMDj1RT3025w2Aw6apPO0QgmfHmXXPD36Nbq8QcWF87RZvm2qd-z9mPV1K9t5hRJWa-NAUpBMmKYUETzorOEUi64tGCJZoWwsgMgTAgqrO55WUhFO8s172TJ5ujxL-sAYHuIbq_jaXv5wX4B6p1aEA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIC.2014.7238334
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479939756
1479939757
EndPage 5
ExternalDocumentID 7238334
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-dacce11e830c3690a52bf0115658fef0a326f8bee036616fad542891bf5a5b843
IEDL.DBID RIE
ISBN 1479939749
9781479939749
IngestDate Wed Jun 26 19:20:57 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-dacce11e830c3690a52bf0115658fef0a326f8bee036616fad542891bf5a5b843
PageCount 5
ParticipantIDs ieee_primary_7238334
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle 2014 IEEE International Conference on Computational Intelligence and Computing Research
PublicationTitleAbbrev ICCIC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7519794
Snippet Machine vision researchers are working on the area of recognition of handwritten or printed text from scanned images for the purpose of digitizing documents...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Character recognition
Digitizing documents
Feed Forward topology
Gurmukhi Script
Handwriting recognition
Image segmentation
MLP
Neurons
Offline recognition
Optical character recognition software
Unicode
Title Multi-layer perceptron (MLP) neural network technique for offline handwritten Gurmukhi character recognition
URI https://ieeexplore.ieee.org/document/7238334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA3bTp5UNvGbHDwomK5dP3MuTidOdpiw20jSX3BstqO0CP71_tKu9QMPnpqWUEJSeC_pe-9HyJUDHEA5ioUIVszzuGQSgZWJKAgl8olAaON3nj4HDy_e48JfdMht64UBgEp8BpZpVv_yk0yV5qhsaApkua7XJV38zL55tUIEWeTFvIlwau4bk4zNh5M4nsRGyeVZu7f8KKdSocl4n0ybcdQikrVVFtJSH78iGv870AMy-PLt0VmLSIekA2mfbCqPLdsIJNd0W-tY8iyl19On2Q01eZZig5dKDU7bSFeKZJZmWhsWSs3p-nu-KpBf0_syfyvXryuqmqhn2oqQsnRA5uO7efzAdjUW2IrbBUuEUuA4ELm2cnGjLPyR1IYlIjHRoG2B7E5HEgCBLnACLRIf9yvckdoXvow894j00iyFY0JHSZKEyD_9AEwGII-Egz0E4p9EFhnJE9I3E7Xc1ikay90cnf79-IzsmcWqhSPnpFfkJVwg_Bfyslr3T4aIrzM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMbDnAc9qWzitzl4ULBdu36fi3PTdewwYbeRpG9wbLajtAj-9b5p1_qBB0_9oJSQFJ5f0ud9QsiNCQGAMIXmoVhpth1wjaOwasx3PY484TKp6p2jiTt8sZ_mzrxF7ptaGAAozWegq9PyX36cikItlfXUBlmWZe-QXdR92_lWreWhzCIZB3WIU31dl8kYQW8UhqNQeblsffueHxuqlHoyOCBR3ZLKRrLSi5zr4uNXSON_m3pIul-Ve3TaaNIRaUHSIeuyylZbM8RruqmcLFma0NtoPL2jKtGSrfFQ-sFpE-pKEWdpKqXiUKrW19-zZY6ETR-L7K1YvS6pqMOeaWNDSpMumQ0eZuFQ2-6yoC0DI9diJgSYJviWISycKjOnz6XiREQTCdJgyHfS5wAoda7pShY7OGMJTC4d5nDfto5JO0kTOCG0H8exhwTquKBSAAOfmfgEQwXkyJE-PyUd1VGLTZWjsdj20dnft6_J3nAWjRfj0eT5nOyrgatsJBeknWcFXCIM5Pyq_AY-AeIgsoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Conference+on+Computational+Intelligence+and+Computing+Research&rft.atitle=Multi-layer+perceptron+%28MLP%29+neural+network+technique+for+offline+handwritten+Gurmukhi+character+recognition&rft.au=Singh%2C+Gurpreet&rft.au=Sachan%2C+Manoj&rft.date=2014-12-01&rft.pub=IEEE&rft.isbn=1479939749&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCIC.2014.7238334&rft.externalDocID=7238334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/sc.gif&client=summon&freeimage=true