Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO

This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are: 1) to maximize the profit from selling energy in...

Full description

Saved in:
Bibliographic Details
Published in2009 15th International Conference on Intelligent System Applications to Power Systems pp. 1 - 6
Main Authors Pindoriya, N.M., Singh, S.N., stergaard, J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2009
Subjects
Online AccessGet full text
ISBN9781424450978
1424450977
DOI10.1109/ISAP.2009.5352896

Cover

Abstract This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are: 1) to maximize the profit from selling energy in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting bi-objective optimization problem which has both binary and continuous optimization variables considered as constrained mixed integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a day-ahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the day-ahead LMPs. The effect of risk is explicitly modeled by taking into account the estimated variance of the day-ahead LMPs.
AbstractList This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are: 1) to maximize the profit from selling energy in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting bi-objective optimization problem which has both binary and continuous optimization variables considered as constrained mixed integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a day-ahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the day-ahead LMPs. The effect of risk is explicitly modeled by taking into account the estimated variance of the day-ahead LMPs.
Author Pindoriya, N.M.
Singh, S.N.
stergaard, J.
Author_xml – sequence: 1
  givenname: N.M.
  surname: Pindoriya
  fullname: Pindoriya, N.M.
  organization: Dept. of Electr. Eng., Indian Inst. of Technol., Kanpur, India
– sequence: 2
  givenname: S.N.
  surname: Singh
  fullname: Singh, S.N.
  organization: Dept. of Electr. Eng., Denmark Tech. Univ., Lyngby, Denmark
– sequence: 3
  givenname: J.
  surname: stergaard
  fullname: stergaard, J.
  organization: Dept. of Electr. Eng., Denmark Tech. Univ., Lyngby, Denmark
BookMark eNpVkM1OAjEcxGuUREEewHjpCyy225a2R4IIJBhIFs-k2_4r1f0g3Wqyb69ELs5lMslv5jBDdNO0DSD0QMmEUqKf1sVsN8kJ0RPBRK709AqNtVSU55wLopW4_pelGqDhGddEMkZu0bjrPsivuGCE8jtknk2fzY5gHC6g8llhj-C-qtC849bj_RFibSq8hAaiSW3EocHztj5BCil8A15UYFMMNqQev5r4CQm_defyqi9jcHhXbO_RwJuqg_HFR2j_stjPV9lmu1zPZ5ssaJIylwsivJgS6aiy1GhVemmdU-C11VxYoT331EvqS-9KqY1iQnmirOWWactG6PFvNgDA4RRDbWJ_uJzEfgChm1rM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISAP.2009.5352896
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424450985
1424450985
EndPage 6
ExternalDocumentID 5352896
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-d2505f5607d18c1a98bf7cdd8ef9c945c59f4f1f71fbfdb79a8358f08cc4c39c3
IEDL.DBID RIE
ISBN 9781424450978
1424450977
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009907330
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-d2505f5607d18c1a98bf7cdd8ef9c945c59f4f1f71fbfdb79a8358f08cc4c39c3
PageCount 6
ParticipantIDs ieee_primary_5352896
PublicationCentury 2000
PublicationDate 2009-Nov.
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-Nov.
PublicationDecade 2000
PublicationTitle 2009 15th International Conference on Intelligent System Applications to Power Systems
PublicationTitleAbbrev ISAP
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453014
Score 1.4580668
Snippet This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive systems
Constraint optimization
Day-ahead self-scheduling
Economic forecasting
Electricity market
Electricity supply industry
Hybrid particle swarm optimization
Hybrid power systems
LMP forecast
Load forecasting
Particle swarm optimization
Power generation
Predictive models
Uncertainty
Title Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO
URI https://ieeexplore.ieee.org/document/5352896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjxa2Fi3rkeCEDRBSYYJN7K-vhoiGcaMA_71tt3AaDx423ZYmval72vf932PkNvYhQmmEbPoQTMeIbIcecA4qpjbjIU8cXrnyVMyfuGP83jeIHd7LQwievIZdtyjr-XrNWzcVVnXW5HI5IAc2DCrtFr7-xQLTdzpYKfdsnlQiJ2lU_2e1lXNMJDdh6w_rdwq65_-6K7ik8voiEx2w6o4JW-dTak68PnLsfG_4z4m7W8ZH53uE9QJaWDRIvl9vmV9uwVrmuHKsMyumnZ09Fe6NtRGjd2pV7Ryo7bncbos6MBja08yokPfNmcJFrzTiVdMU886oOOt037RafbcJrPRcDYYs7rPAlvKoGTaoSBjkY_QYQphLlNlBGidopEgeQyxNNyERoRGGa2EzC1qS02QAnCIJESnpFmsCzwjFEUQKtAm70HEFchUoxGBgMTE0OMmOictNzuL98pJY1FPzMXfny_Joa_deOXfFWmWHxu8thCgVDd-7b8AQEyuRA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwsa6dT0ShAxlSDJMuJGtfTVEMowZB_zrbbuB0Xjwtu3QNN1L39e-7_seQne-CRMIPaLRgyTUAyApUIdQyHyqMxbQwOid43EQvdDHmT-rofudFgYALPkMWubR1vLlSqzNVVnbWpHwYA_t67xP_VKttbtR0eDEnA-26i2dCRnbmjpV72FV13Qd3h4m3UnpV1kN-6O_ik0vgyMUbydWskreWusia4nPX56N_535MWp-C_nwZJeiTlAN8gZKH9IN6epNWOIElook-r9JQ0h_xSuFddzovXqJSz9qfSLHixz3LLq2NCPct41zFkLDdxxbzTS2vAMcbYz6C0-S5yaaDvrTXkSqTgtkwZ2CSIODlMY-TLqhcFMeZooJKUNQXHDqC58rqlzFXJUpmTGeatwWKicUggqPC-8U1fNVDmcIA3PcTEiVdoRHM8FDCYo5TATKFx2qvHPUMKszfy-9NObVwlz8_fkWHUTTeDQfDcdPl-jQVnKsDvAK1YuPNVxrQFBkNzYOvgCRbLGR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+15th+International+Conference+on+Intelligent+System+Applications+to+Power+Systems&rft.atitle=Day-Ahead+Self-Scheduling+of+Thermal+Generator+in+Competitive+Electricity+Market+Using+Hybrid+PSO&rft.au=Pindoriya%2C+N.M.&rft.au=Singh%2C+S.N.&rft.au=stergaard%2C+J.&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424450978&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISAP.2009.5352896&rft.externalDocID=5352896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450978/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450978/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450978/sc.gif&client=summon&freeimage=true