Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO
This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are: 1) to maximize the profit from selling energy in...
Saved in:
Published in | 2009 15th International Conference on Intelligent System Applications to Power Systems pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424450978 1424450977 |
DOI | 10.1109/ISAP.2009.5352896 |
Cover
Abstract | This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are: 1) to maximize the profit from selling energy in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting bi-objective optimization problem which has both binary and continuous optimization variables considered as constrained mixed integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a day-ahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the day-ahead LMPs. The effect of risk is explicitly modeled by taking into account the estimated variance of the day-ahead LMPs. |
---|---|
AbstractList | This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are: 1) to maximize the profit from selling energy in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting bi-objective optimization problem which has both binary and continuous optimization variables considered as constrained mixed integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a day-ahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the day-ahead LMPs. The effect of risk is explicitly modeled by taking into account the estimated variance of the day-ahead LMPs. |
Author | Pindoriya, N.M. Singh, S.N. stergaard, J. |
Author_xml | – sequence: 1 givenname: N.M. surname: Pindoriya fullname: Pindoriya, N.M. organization: Dept. of Electr. Eng., Indian Inst. of Technol., Kanpur, India – sequence: 2 givenname: S.N. surname: Singh fullname: Singh, S.N. organization: Dept. of Electr. Eng., Denmark Tech. Univ., Lyngby, Denmark – sequence: 3 givenname: J. surname: stergaard fullname: stergaard, J. organization: Dept. of Electr. Eng., Denmark Tech. Univ., Lyngby, Denmark |
BookMark | eNpVkM1OAjEcxGuUREEewHjpCyy225a2R4IIJBhIFs-k2_4r1f0g3Wqyb69ELs5lMslv5jBDdNO0DSD0QMmEUqKf1sVsN8kJ0RPBRK709AqNtVSU55wLopW4_pelGqDhGddEMkZu0bjrPsivuGCE8jtknk2fzY5gHC6g8llhj-C-qtC849bj_RFibSq8hAaiSW3EocHztj5BCil8A15UYFMMNqQev5r4CQm_defyqi9jcHhXbO_RwJuqg_HFR2j_stjPV9lmu1zPZ5ssaJIylwsivJgS6aiy1GhVemmdU-C11VxYoT331EvqS-9KqY1iQnmirOWWactG6PFvNgDA4RRDbWJ_uJzEfgChm1rM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISAP.2009.5352896 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781424450985 1424450985 |
EndPage | 6 |
ExternalDocumentID | 5352896 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-d2505f5607d18c1a98bf7cdd8ef9c945c59f4f1f71fbfdb79a8358f08cc4c39c3 |
IEDL.DBID | RIE |
ISBN | 9781424450978 1424450977 |
IngestDate | Wed Aug 27 02:43:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2009907330 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-d2505f5607d18c1a98bf7cdd8ef9c945c59f4f1f71fbfdb79a8358f08cc4c39c3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5352896 |
PublicationCentury | 2000 |
PublicationDate | 2009-Nov. |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-Nov. |
PublicationDecade | 2000 |
PublicationTitle | 2009 15th International Conference on Intelligent System Applications to Power Systems |
PublicationTitleAbbrev | ISAP |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453014 |
Score | 1.4580668 |
Snippet | This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Adaptive systems Constraint optimization Day-ahead self-scheduling Economic forecasting Electricity market Electricity supply industry Hybrid particle swarm optimization Hybrid power systems LMP forecast Load forecasting Particle swarm optimization Power generation Predictive models Uncertainty |
Title | Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO |
URI | https://ieeexplore.ieee.org/document/5352896 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjxa2Fi3rkeCEDRBSYYJN7K-vhoiGcaMA_71tt3AaDx423ZYmval72vf932PkNvYhQmmEbPoQTMeIbIcecA4qpjbjIU8cXrnyVMyfuGP83jeIHd7LQwievIZdtyjr-XrNWzcVVnXW5HI5IAc2DCrtFr7-xQLTdzpYKfdsnlQiJ2lU_2e1lXNMJDdh6w_rdwq65_-6K7ik8voiEx2w6o4JW-dTak68PnLsfG_4z4m7W8ZH53uE9QJaWDRIvl9vmV9uwVrmuHKsMyumnZ09Fe6NtRGjd2pV7Ryo7bncbos6MBja08yokPfNmcJFrzTiVdMU886oOOt037RafbcJrPRcDYYs7rPAlvKoGTaoSBjkY_QYQphLlNlBGidopEgeQyxNNyERoRGGa2EzC1qS02QAnCIJESnpFmsCzwjFEUQKtAm70HEFchUoxGBgMTE0OMmOictNzuL98pJY1FPzMXfny_Joa_deOXfFWmWHxu8thCgVDd-7b8AQEyuRA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwsa6dT0ShAxlSDJMuJGtfTVEMowZB_zrbbuB0Xjwtu3QNN1L39e-7_seQne-CRMIPaLRgyTUAyApUIdQyHyqMxbQwOid43EQvdDHmT-rofudFgYALPkMWubR1vLlSqzNVVnbWpHwYA_t67xP_VKttbtR0eDEnA-26i2dCRnbmjpV72FV13Qd3h4m3UnpV1kN-6O_ik0vgyMUbydWskreWusia4nPX56N_535MWp-C_nwZJeiTlAN8gZKH9IN6epNWOIElook-r9JQ0h_xSuFddzovXqJSz9qfSLHixz3LLq2NCPct41zFkLDdxxbzTS2vAMcbYz6C0-S5yaaDvrTXkSqTgtkwZ2CSIODlMY-TLqhcFMeZooJKUNQXHDqC58rqlzFXJUpmTGeatwWKicUggqPC-8U1fNVDmcIA3PcTEiVdoRHM8FDCYo5TATKFx2qvHPUMKszfy-9NObVwlz8_fkWHUTTeDQfDcdPl-jQVnKsDvAK1YuPNVxrQFBkNzYOvgCRbLGR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+15th+International+Conference+on+Intelligent+System+Applications+to+Power+Systems&rft.atitle=Day-Ahead+Self-Scheduling+of+Thermal+Generator+in+Competitive+Electricity+Market+Using+Hybrid+PSO&rft.au=Pindoriya%2C+N.M.&rft.au=Singh%2C+S.N.&rft.au=stergaard%2C+J.&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424450978&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISAP.2009.5352896&rft.externalDocID=5352896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450978/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450978/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450978/sc.gif&client=summon&freeimage=true |