Classification of sleep states in mice using generic compression algorithms

Sleep is associated with a variety of chronic diseases as well as most psychiatric, addiction and mood disorders. To analyze sleep patterns in rodents, researchers analyze polysomnogram data containing electroencephalographs (EEG) and electromyographs (EMG). However, the analysis is performed manual...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) pp. 1 - 2
Main Authors Mayer, Owen, Lim, Diane C., Pack, Allan I., Stamm, Matthew C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep is associated with a variety of chronic diseases as well as most psychiatric, addiction and mood disorders. To analyze sleep patterns in rodents, researchers analyze polysomnogram data containing electroencephalographs (EEG) and electromyographs (EMG). However, the analysis is performed manually by a expert human scorer, which is a slow, time consuming, and expensive process that is also subject to known human error and inter-scorer inconsistency [1]. To address this, researchers have developed a variety of techniques to automatically classify rodent sleep states using features extracted from EEG and EMG signals [2]. In many approaches, researchers extract a variety of heuristic features from explicitly chosen spectral bands of the EEG and EMG signals [3]. However, human designed, heuristic features often do not capture complete salient sleep-state information, which leads to inferior classification performance.
AbstractList Sleep is associated with a variety of chronic diseases as well as most psychiatric, addiction and mood disorders. To analyze sleep patterns in rodents, researchers analyze polysomnogram data containing electroencephalographs (EEG) and electromyographs (EMG). However, the analysis is performed manually by a expert human scorer, which is a slow, time consuming, and expensive process that is also subject to known human error and inter-scorer inconsistency [1]. To address this, researchers have developed a variety of techniques to automatically classify rodent sleep states using features extracted from EEG and EMG signals [2]. In many approaches, researchers extract a variety of heuristic features from explicitly chosen spectral bands of the EEG and EMG signals [3]. However, human designed, heuristic features often do not capture complete salient sleep-state information, which leads to inferior classification performance.
Author Pack, Allan I.
Lim, Diane C.
Stamm, Matthew C.
Mayer, Owen
Author_xml – sequence: 1
  givenname: Owen
  surname: Mayer
  fullname: Mayer, Owen
  organization: Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA
– sequence: 2
  givenname: Diane C.
  surname: Lim
  fullname: Lim, Diane C.
  organization: Sch. of Med., Dept. of Med., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Allan I.
  surname: Pack
  fullname: Pack, Allan I.
  organization: Sch. of Med., Dept. of Med., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Matthew C.
  surname: Stamm
  fullname: Stamm, Matthew C.
  organization: Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA
BookMark eNotj8tKxDAUQCPowhn9AHGTH2jNu8lSiy8cUXD2Q5re1AttUpq68O8dcFZndQ6cDTlPOQEhN5zVnDN39_X5_lALxk3dWGWsUWdkwzVzzDRcikvy1o6-FIwY_Io50RxpGQFmWla_QqGY6IQB6E_BNNABEiwYaMjTvMDROxp-HPKC6_dUrshF9GOB6xO3ZP_0uG9fqt3H82t7v6vQsbXqmeo6a71upAXtJFjoTd_IoAwLhjEpO930Sknuu8Ctg2h1dCC04FzIKOSW3P5nEQAO84KTX34Ppz35Bwq1SgI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPMB.2016.7846864
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509067132
9781509067138
EndPage 2
ExternalDocumentID 7846864
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-d04bb88a5738e593e8ed6d73c460c60033b57d4431abc189ef85f9e2521123f23
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-d04bb88a5738e593e8ed6d73c460c60033b57d4431abc189ef85f9e2521123f23
PageCount 2
ParticipantIDs ieee_primary_7846864
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
PublicationTitleAbbrev SPMB
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6230044
Snippet Sleep is associated with a variety of chronic diseases as well as most psychiatric, addiction and mood disorders. To analyze sleep patterns in rodents,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Compression algorithms
Dictionaries
Electroencephalography
Electromyography
Mice
Sleep
Support vector machines
Title Classification of sleep states in mice using generic compression algorithms
URI https://ieeexplore.ieee.org/document/7846864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvHHlBw82q5dX5P0qjiGMhk4YbfRJK-zONuxdRf_epO0ThQP3kIIJLxAvrzk-95HyDWYY1EKGXiZySc8iDD00iGih6ECCFSikFuB8-SJjV_gYR7PW-Rmr4VBREc-Q9823V--LtXOPpUNuAFLwaBN2iZxq7VazUdlGCSD5-nk1nK1mN-M-2GY4vBidEgmXzPVNJE3f1dJX338KsL436Uckd63Mo9O95hzTFpYdMmjc7a0nB8XZlpmdLtCXFOnFtrSvKDWdJ5ajvuSLm2h6VxRSyavSbAFTVfLcpNXr-_bHpmN7md3Y68xSfDyJKg8HYCUQqQxjwTGSYQCNdM8UsACxaxTm4y5BnNNSKUKRYKZiLMEhwa1DWZlw-iEdIqywFNCQXMuIyYiLQAy4ELKBFXIJIMgZak6I10bh8W6LoOxaEJw_nf3BTmwe1EzP_qkU212eGnwu5JXbuM-AUXrnfE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHN_aja7urRoLCCImYcCNr94ZE3AiMi3-97TYxGg_emqZJm9ekX9v3fe8DuKH6WJRCOlaq3xMW9dG1Yg_RQldR6qhQITcC52jIei_0aRJMGnC71cIgYkk-Q9s0y1x-kquN-SrrcA2WgtEd2NW4H3iVWqtOVbpO2HkeRXeGrcXseuQPy5QSMboHEH3NVRFF3uxNIW318asM438Xcwjtb20eGW1R5wgamLWgX3pbGtZPGWiSp2S9QFySUi-0JvOMGNt5YljuMzIzpabnihg6eUWDzUi8mOWrefH6vm7DuPswvu9ZtU2CNQ-dwkocKqUQccB9gUHoo8CEJdxXlDmKGa82GfCE6otCLJUrQkxFkIboadzWqJV6_jE0szzDEyA04Vz6TPiJoDSlXEgZonKZZNSJWaxOoWXiMF1WhTCmdQjO_u6-hr3eOBpMB4_D_jnsm32peCAX0CxWG7zUaF7Iq3ITPwG00qE7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Signal+Processing+in+Medicine+and+Biology+Symposium+%28SPMB%29&rft.atitle=Classification+of+sleep+states+in+mice+using+generic+compression+algorithms&rft.au=Mayer%2C+Owen&rft.au=Lim%2C+Diane+C.&rft.au=Pack%2C+Allan+I.&rft.au=Stamm%2C+Matthew+C.&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FSPMB.2016.7846864&rft.externalDocID=7846864