Online RGB-D tracking via detection-learning-segmentation

In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the color and depth cues, we propose a novel RGB-D tracking framework (DLS) that simultaneously builds the target 2D appearance model and 3D distri...

Full description

Saved in:
Bibliographic Details
Published in2016 23rd International Conference on Pattern Recognition (ICPR) pp. 1231 - 1236
Main Authors Ning An, Xiao-Guang Zhao, Zeng-Guang Hou
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/ICPR.2016.7899805

Cover

Abstract In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the color and depth cues, we propose a novel RGB-D tracking framework (DLS) that simultaneously builds the target 2D appearance model and 3D distribution model. The framework decomposes the tracking task into detection, learning and segmentation. The detection and segmentation components locate the target collaboratively by using the two target models. An adaptive depth histogram is proposed in the segmentation component to efficiently locate the target in depth frames. The learning component estimates the detection and segmentation errors, updates the target models from the most confident frames by identifying two kinds of distractors: potential failure and occlusion. Extensive experimental results on a large-scale benchmark dataset show that the proposed method performs favourably against state-of-the-art RGB-D trackers in terms of efficiency, accuracy, and robustness.
AbstractList In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the color and depth cues, we propose a novel RGB-D tracking framework (DLS) that simultaneously builds the target 2D appearance model and 3D distribution model. The framework decomposes the tracking task into detection, learning and segmentation. The detection and segmentation components locate the target collaboratively by using the two target models. An adaptive depth histogram is proposed in the segmentation component to efficiently locate the target in depth frames. The learning component estimates the detection and segmentation errors, updates the target models from the most confident frames by identifying two kinds of distractors: potential failure and occlusion. Extensive experimental results on a large-scale benchmark dataset show that the proposed method performs favourably against state-of-the-art RGB-D trackers in terms of efficiency, accuracy, and robustness.
Author Zeng-Guang Hou
Ning An
Xiao-Guang Zhao
Author_xml – sequence: 1
  surname: Ning An
  fullname: Ning An
  email: ning.an@ia.ac.cn
  organization: Inst. of Autom., Beijing, China
– sequence: 2
  surname: Xiao-Guang Zhao
  fullname: Xiao-Guang Zhao
  email: xiaoguang.zhao@ia.ac.cn
  organization: Inst. of Autom., Beijing, China
– sequence: 3
  surname: Zeng-Guang Hou
  fullname: Zeng-Guang Hou
  email: zengguang.hou@ia.ac.cn
  organization: Inst. of Autom., Beijing, China
BookMark eNotj8FKAzEUACPowdZ-gHjZH8ial012k6OutRYKldJ7eUleSnCbyjYU_Hst9jQwh4GZsNt8zMTYI4gaQNjnZf-5qaWAtu6MtUboGzaznQEtrFBGdfKe2XUeUqZqs3jlb1UZ0X-lvK_OCatAhXxJx8wHwjH_aX6i_YFywYt9YHcRhxPNrpyy7ft823_w1Xqx7F9WPFlRuI8IIgCaoGNolZJaRHI6Aigk1wB5JzUgRKPQYIu-JdMZ6RoJwSmEZsqe_rOJiHbfYzrg-LO7_jS_fupEfw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2016.7899805
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509048472
1509048472
EndPage 1236
ExternalDocumentID 7899805
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-cfa10d1a8d5fd644250feb5f114aeb31ecb251a1f84a8a6ac6e8782b321db4a13
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:47 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-cfa10d1a8d5fd644250feb5f114aeb31ecb251a1f84a8a6ac6e8782b321db4a13
PageCount 6
ParticipantIDs ieee_primary_7899805
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 23rd International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0686128
Snippet In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the...
SourceID ieee
SourceType Publisher
StartPage 1231
SubjectTerms Adaptation models
Computational modeling
Histograms
Image color analysis
Solid modeling
Target tracking
Three-dimensional displays
Title Online RGB-D tracking via detection-learning-segmentation
URI https://ieeexplore.ieee.org/document/7899805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbHDy6abb5aHK1WqtQKaVCb2V2drYUMZWaevDXO5vEiuLB2xIWks0OzHu7780IcYkxxGgCkIEJmaBgz0rgUJEpYGSJIm3RmZNHj8nwKXqYxbOGuNp6YYioFJ-R74blXb5Z4cYdlXV6jhy4gqU7HGaVV6u-qFRB1rnvjydOq5X49bwfDVPKfDHYE6OvN1UykWd_U2gfP34VYfzvp-yL9rczzxtvc86BaFDeEllVL9Sb3F3LG69YA7rzb-99CZ6hotRa5bJuD7GQb7R4qQ1HeVtMB7fT_lDWLRHkMgsKiRZUYBSkJraGkQzjF0s6tkxqgFmxItSMV0DZNIIUEsCEUoYAOuwqoyNQ4aFo5qucjoQHEHUxzjRmzPG6CfOuUDE4SDJtQs244Vi03Krnr1XRi3m94JO_H5-KXffnK53HmWgW6w2dc7Yu9EW5TZ9o8Zft
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0QPOhJDRi_3YNHu2zZdtm9iiIoEEIw4UamX4QQF4OLB3-97e6K0Xjw1jRN2qZN5r32vRmAa8mRSxUgCVRoCYpsGYL2qpAYJTNaM2GkMycPhlH3mT1O-bQCN1svjNY6F59p3zXzv3y1khv3VNZoOXLgEpbu2LjPeOHWKr8qaZA0eu3R2Km1Ir8c-aNkSh4xOvsw-JqrEIos_U0mfPnxKw3jfxdzAPVvb5432kadQ6jotAZJkTHUGz_ckjsvW6N0L-De-wI9pbNcbZWSskDEnLzp-UtpOUrrMOncT9pdUhZFIIskyIg0SANFMVbcKItlLIIxWnBjaQ1aXky1FBaxIDUxwxgjlJGOLQgQYZMqwZCGR1BNV6k-Bg-RNSVPhEwsy2tGlnmF1MKDKBEqFBY5nEDN7Xr2WqS9mJUbPv27-wp2u5NBf9bvDZ_OYM-dQqH6OIdqtt7oCxu7M3GZH9knj_ebOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+23rd+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Online+RGB-D+tracking+via+detection-learning-segmentation&rft.au=Ning+An&rft.au=Xiao-Guang+Zhao&rft.au=Zeng-Guang+Hou&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=1231&rft.epage=1236&rft_id=info:doi/10.1109%2FICPR.2016.7899805&rft.externalDocID=7899805