Online RGB-D tracking via detection-learning-segmentation
In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the color and depth cues, we propose a novel RGB-D tracking framework (DLS) that simultaneously builds the target 2D appearance model and 3D distri...
Saved in:
Published in | 2016 23rd International Conference on Pattern Recognition (ICPR) pp. 1231 - 1236 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICPR.2016.7899805 |
Cover
Abstract | In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the color and depth cues, we propose a novel RGB-D tracking framework (DLS) that simultaneously builds the target 2D appearance model and 3D distribution model. The framework decomposes the tracking task into detection, learning and segmentation. The detection and segmentation components locate the target collaboratively by using the two target models. An adaptive depth histogram is proposed in the segmentation component to efficiently locate the target in depth frames. The learning component estimates the detection and segmentation errors, updates the target models from the most confident frames by identifying two kinds of distractors: potential failure and occlusion. Extensive experimental results on a large-scale benchmark dataset show that the proposed method performs favourably against state-of-the-art RGB-D trackers in terms of efficiency, accuracy, and robustness. |
---|---|
AbstractList | In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the color and depth cues, we propose a novel RGB-D tracking framework (DLS) that simultaneously builds the target 2D appearance model and 3D distribution model. The framework decomposes the tracking task into detection, learning and segmentation. The detection and segmentation components locate the target collaboratively by using the two target models. An adaptive depth histogram is proposed in the segmentation component to efficiently locate the target in depth frames. The learning component estimates the detection and segmentation errors, updates the target models from the most confident frames by identifying two kinds of distractors: potential failure and occlusion. Extensive experimental results on a large-scale benchmark dataset show that the proposed method performs favourably against state-of-the-art RGB-D trackers in terms of efficiency, accuracy, and robustness. |
Author | Zeng-Guang Hou Ning An Xiao-Guang Zhao |
Author_xml | – sequence: 1 surname: Ning An fullname: Ning An email: ning.an@ia.ac.cn organization: Inst. of Autom., Beijing, China – sequence: 2 surname: Xiao-Guang Zhao fullname: Xiao-Guang Zhao email: xiaoguang.zhao@ia.ac.cn organization: Inst. of Autom., Beijing, China – sequence: 3 surname: Zeng-Guang Hou fullname: Zeng-Guang Hou email: zengguang.hou@ia.ac.cn organization: Inst. of Autom., Beijing, China |
BookMark | eNotj8FKAzEUACPowdZ-gHjZH8ial012k6OutRYKldJ7eUleSnCbyjYU_Hst9jQwh4GZsNt8zMTYI4gaQNjnZf-5qaWAtu6MtUboGzaznQEtrFBGdfKe2XUeUqZqs3jlb1UZ0X-lvK_OCatAhXxJx8wHwjH_aX6i_YFywYt9YHcRhxPNrpyy7ft823_w1Xqx7F9WPFlRuI8IIgCaoGNolZJaRHI6Aigk1wB5JzUgRKPQYIu-JdMZ6RoJwSmEZsqe_rOJiHbfYzrg-LO7_jS_fupEfw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPR.2016.7899805 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509048472 1509048472 |
EndPage | 1236 |
ExternalDocumentID | 7899805 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-cfa10d1a8d5fd644250feb5f114aeb31ecb251a1f84a8a6ac6e8782b321db4a13 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:47 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-cfa10d1a8d5fd644250feb5f114aeb31ecb251a1f84a8a6ac6e8782b321db4a13 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7899805 |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2016 23rd International Conference on Pattern Recognition (ICPR) |
PublicationTitleAbbrev | ICPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.0686128 |
Snippet | In this paper, we address the problem of online RGB-D tracking where the target object undergoes significant appearance changes. To sufficiently exploit the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1231 |
SubjectTerms | Adaptation models Computational modeling Histograms Image color analysis Solid modeling Target tracking Three-dimensional displays |
Title | Online RGB-D tracking via detection-learning-segmentation |
URI | https://ieeexplore.ieee.org/document/7899805 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbHDy6abb5aHK1WqtQKaVCb2V2drYUMZWaevDXO5vEiuLB2xIWks0OzHu7780IcYkxxGgCkIEJmaBgz0rgUJEpYGSJIm3RmZNHj8nwKXqYxbOGuNp6YYioFJ-R74blXb5Z4cYdlXV6jhy4gqU7HGaVV6u-qFRB1rnvjydOq5X49bwfDVPKfDHYE6OvN1UykWd_U2gfP34VYfzvp-yL9rczzxtvc86BaFDeEllVL9Sb3F3LG69YA7rzb-99CZ6hotRa5bJuD7GQb7R4qQ1HeVtMB7fT_lDWLRHkMgsKiRZUYBSkJraGkQzjF0s6tkxqgFmxItSMV0DZNIIUEsCEUoYAOuwqoyNQ4aFo5qucjoQHEHUxzjRmzPG6CfOuUDE4SDJtQs244Vi03Krnr1XRi3m94JO_H5-KXffnK53HmWgW6w2dc7Yu9EW5TZ9o8Zft |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0QPOhJDRi_3YNHu2zZdtm9iiIoEEIw4UamX4QQF4OLB3-97e6K0Xjw1jRN2qZN5r32vRmAa8mRSxUgCVRoCYpsGYL2qpAYJTNaM2GkMycPhlH3mT1O-bQCN1svjNY6F59p3zXzv3y1khv3VNZoOXLgEpbu2LjPeOHWKr8qaZA0eu3R2Km1Ir8c-aNkSh4xOvsw-JqrEIos_U0mfPnxKw3jfxdzAPVvb5432kadQ6jotAZJkTHUGz_ckjsvW6N0L-De-wI9pbNcbZWSskDEnLzp-UtpOUrrMOncT9pdUhZFIIskyIg0SANFMVbcKItlLIIxWnBjaQ1aXky1FBaxIDUxwxgjlJGOLQgQYZMqwZCGR1BNV6k-Bg-RNSVPhEwsy2tGlnmF1MKDKBEqFBY5nEDN7Xr2WqS9mJUbPv27-wp2u5NBf9bvDZ_OYM-dQqH6OIdqtt7oCxu7M3GZH9knj_ebOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+23rd+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Online+RGB-D+tracking+via+detection-learning-segmentation&rft.au=Ning+An&rft.au=Xiao-Guang+Zhao&rft.au=Zeng-Guang+Hou&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=1231&rft.epage=1236&rft_id=info:doi/10.1109%2FICPR.2016.7899805&rft.externalDocID=7899805 |