EEG analysis for understanding stress based on affective model basis function
Coping with stress has shown to be able to avoid many complications in medical condition. In this paper we present an alternative method in analyzing and understanding stress using the four basic emotions of happy, calm, sad and fear as our basis function. Electroencephalogram (EEG) signals were cap...
Saved in:
Published in | 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE) pp. 592 - 597 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coping with stress has shown to be able to avoid many complications in medical condition. In this paper we present an alternative method in analyzing and understanding stress using the four basic emotions of happy, calm, sad and fear as our basis function. Electroencephalogram (EEG) signals were captured from the scalp of the brain and measured in responds to various stimuli from the four basic emotions to stimulating stress base on the IAPS emotion stimuli. Features from the EEG signals were extracted using the Kernel Density Estimation (KDE) and classified using the Multilayer Perceptron (MLP), a neural network classifier to obtain accuracy of the subject's emotion leading to stress. Results have shown the potential of using the basic emotion basis function to visualize the stress perception as an alternative tool for engineers and psychologist. |
---|---|
AbstractList | Coping with stress has shown to be able to avoid many complications in medical condition. In this paper we present an alternative method in analyzing and understanding stress using the four basic emotions of happy, calm, sad and fear as our basis function. Electroencephalogram (EEG) signals were captured from the scalp of the brain and measured in responds to various stimuli from the four basic emotions to stimulating stress base on the IAPS emotion stimuli. Features from the EEG signals were extracted using the Kernel Density Estimation (KDE) and classified using the Multilayer Perceptron (MLP), a neural network classifier to obtain accuracy of the subject's emotion leading to stress. Results have shown the potential of using the basic emotion basis function to visualize the stress perception as an alternative tool for engineers and psychologist. |
Author | Rahnuma, K. S. Wahab, A. Majid, H. Kamaruddin, N. |
Author_xml | – sequence: 1 givenname: K. S. surname: Rahnuma fullname: Rahnuma, K. S. organization: Kulliyyah of Inf. & Commun. Technol., Int. Islamic Univ. Malaysia (IIUM), Kuala Lumpur, Malaysia – sequence: 2 givenname: A. surname: Wahab fullname: Wahab, A. email: abdulwahab@iium.edu.my organization: Kulliyyah of Inf. & Commun. Technol., Int. Islamic Univ. Malaysia (IIUM), Kuala Lumpur, Malaysia – sequence: 3 givenname: N. surname: Kamaruddin fullname: Kamaruddin, N. organization: Kulliyyah of Inf. & Commun. Technol., Int. Islamic Univ. Malaysia (IIUM), Kuala Lumpur, Malaysia – sequence: 4 givenname: H. surname: Majid fullname: Majid, H. organization: Kulliyyah of Inf. & Commun. Technol., Int. Islamic Univ. Malaysia (IIUM), Kuala Lumpur, Malaysia |
BookMark | eNo1UM1Kw0AYXLGCbc0DiJd9gcRvf7I_RwmxFioe7MFb2WS_lUi6kWwq9O1tsc5lmBlmDrMgszhEJOSeQcEY2Mf1e1UXHBgrSquFsfaKZFYbphg30khmr8niX4hyRuagpc6VMh-3JEvpC05QygKXc_Ja1yvqouuPqUs0DCM9RI9jmlz0XfykaRoxJdq4hJ4OkboQsJ26H6T7wWN_Ds69QzyZQ7wjN8H1CbMLL8n2ud5WL_nmbbWunjZ5Z2HKWzTWccOCE07LYE1ruFK-LJvQNiC1hVaBA845IAfORFAyoGoUC43wpRRL8vA32yHi7nvs9m487i5niF96MVK4 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISCE.2011.5973899 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781612848419 1612848419 1612848427 9781612848426 |
EndPage | 597 |
ExternalDocumentID | 5973899 |
Genre | orig-research |
GroupedDBID | 29G 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ AI. ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL VH1 |
ID | FETCH-LOGICAL-i90t-ce89a281fa3a74f98c8266d55bfcb04790c60a02220e20213f64fe6b61fb3d543 |
IEDL.DBID | RIE |
ISBN | 1612848435 9781612848433 |
ISSN | 0747-668X |
IngestDate | Wed Aug 27 03:22:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-ce89a281fa3a74f98c8266d55bfcb04790c60a02220e20213f64fe6b61fb3d543 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5973899 |
PublicationCentury | 2000 |
PublicationDate | 2011-June |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-June |
PublicationDecade | 2010 |
PublicationTitle | 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE) |
PublicationTitleAbbrev | ISCE |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000669024 ssj0027939 |
Score | 1.9909112 |
Snippet | Coping with stress has shown to be able to avoid many complications in medical condition. In this paper we present an alternative method in analyzing and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 592 |
SubjectTerms | Accuracy Arousal (A) Brain Electroencephalography Electroencephalography (EEG) Feature extraction Humans Kernel Kernel Density Estimation (KDE) Multi-layer Perceptron (MLP) Stress Valance (V) |
Title | EEG analysis for understanding stress based on affective model basis function |
URI | https://ieeexplore.ieee.org/document/5973899 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTioxXf7MGjaTfZZJucS2oVKoIVeiv7BBFSkeTir3cmSWsVD96yCSHJZplvZna-bwBuMmfGkVIqUELbIFZSoR2UUeBc5HC5RNZYykPOH-XsJX5YJssO3G65MM65uvjMDemw3su3a1NRqmyEzi_JwXWhi4Fbw9Xa5lMQOjNOTIdNsJXVXcRIHz6QMl0SqUuSMU7RQWi1njZj0W53hjwb3T9P8kbZs33aj7YrNepMD2C-ed-m2ORtWJV6aD5_STn-94MOYfDN72NPW-Q6go4rjmF_R5qwD_M8v2OqVSxh6NmyapcGwxqOCSMQtGxdMFXXhaDpZHVvHbpA9yFq0p8fwGKaLyazoG29ELxmvAyMSzMVpaFXQo1jn6UGoxBpk0R7o0mUnhvJFcWK3EXoJQgvY--klqHXwiaxOIFesS7cKTCpY5V6hEFvqbs1V8Lj0KNjI2wouT-DPs3L6r0R11i1U3L-9-kL2GuSupQGuYRe-VG5K_QKSn1dL4cvbiqwag |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ7UelAvPlrj2z14lHZhYQvnBm21NCbWpLdmn4kxocbAxV_vDtBajQdvLIQAy2a-mdn5vgG4SYwaBEIITzCpvVBw4ewgDzxjAuOWS6CVxjxkNuWjl_BhHs1bcLvmwhhjquIz08PDai9fL1WJqbK-c35RDm4Lth3uR37N1lpnVBx4JhS5DqtwK6n6iKFCvMd5PEdaF0dzHDsXoVF7Wo1Zs-Hp06Q_fh6mtbZn87wfjVcq3Lnbh2z1xnW5yVuvLGRPff4Sc_zvJx1A95vhR57W2HUILZMfwd6GOGEHsjS9J6LRLCHOtyXlJhGG1CwTgjCoyTInoqoMccaTVN118ALe53AT_30XZnfpbDjymuYL3mtCC0-ZOBFB7FvBxCC0SaxcHMJ1FEmrJMrSU8WpwGiRmsD5Cczy0BouuW8l01HIjqGdL3NzAoTLUMTWAaHV2N-aCmbd0DrXhmmfU3sKHZyXxXstr7FopuTs79PXsDOaZZPFZDx9PIfdOsWLSZELaBcfpbl0PkIhr6ql8QXaRLOz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+15th+International+Symposium+on+Consumer+Electronics+%28ISCE%29&rft.atitle=EEG+analysis+for+understanding+stress+based+on+affective+model+basis+function&rft.au=Rahnuma%2C+K.+S.&rft.au=Wahab%2C+A.&rft.au=Kamaruddin%2C+N.&rft.au=Majid%2C+H.&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781612848433&rft.issn=0747-668X&rft.spage=592&rft.epage=597&rft_id=info:doi/10.1109%2FISCE.2011.5973899&rft.externalDocID=5973899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-668X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-668X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-668X&client=summon |