Energy efficient data prediction model for the sensor cloud environment

The sensors are used for many applications in the recent time. The sensors generally connect with each other wirelessly to form a Wireless Sensor Network (WSN). Cloud computing is an emerging technology where the end users pay and access the services without worried about the infrastructure. Sensor...

Full description

Saved in:
Bibliographic Details
Published in2017 International Conference on IoT and Application (ICIOT) pp. 1 - 3
Main Authors Das, Kalyan, Das, Satyabrata, Mishra, Ananya, Mohapatra, Aurobindo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2017
Subjects
Online AccessGet full text
DOI10.1109/ICIOTA.2017.8073619

Cover

Loading…
Abstract The sensors are used for many applications in the recent time. The sensors generally connect with each other wirelessly to form a Wireless Sensor Network (WSN). Cloud computing is an emerging technology where the end users pay and access the services without worried about the infrastructure. Sensor cloud combines sensor network with the cloud computing in which the end users can access to the sensor network through the cloud computing. Sensor cloud should be energy efficient as the battery life of the sensor is finite and huge amount of energy is consumed in the cloud computing environment to provide services to the end users. The users request to access the sensor through the cloud system redirects every time to the sensor network, which causes more transmission in the sensor network as a result more energy is consumed. In this paper, we have compared mainly the accuracy and time consumed by various prediction schemes using some activation functions. From our analysis, we found that the Rprop-algorithm using logistic activation function is suitable as it provides nearly 97.2 percentage accuracy within an admissible delay of 13 seconds. Our proposed sensor cloud model integrates Rprop-prediction scheme using the logistic activation function in cloud system which predicts future sensor data, such that users request are replied at cloud level which saves energy as number of transmissions are reduced in the sensor network.
AbstractList The sensors are used for many applications in the recent time. The sensors generally connect with each other wirelessly to form a Wireless Sensor Network (WSN). Cloud computing is an emerging technology where the end users pay and access the services without worried about the infrastructure. Sensor cloud combines sensor network with the cloud computing in which the end users can access to the sensor network through the cloud computing. Sensor cloud should be energy efficient as the battery life of the sensor is finite and huge amount of energy is consumed in the cloud computing environment to provide services to the end users. The users request to access the sensor through the cloud system redirects every time to the sensor network, which causes more transmission in the sensor network as a result more energy is consumed. In this paper, we have compared mainly the accuracy and time consumed by various prediction schemes using some activation functions. From our analysis, we found that the Rprop-algorithm using logistic activation function is suitable as it provides nearly 97.2 percentage accuracy within an admissible delay of 13 seconds. Our proposed sensor cloud model integrates Rprop-prediction scheme using the logistic activation function in cloud system which predicts future sensor data, such that users request are replied at cloud level which saves energy as number of transmissions are reduced in the sensor network.
Author Das, Kalyan
Mishra, Ananya
Das, Satyabrata
Mohapatra, Aurobindo
Author_xml – sequence: 1
  givenname: Kalyan
  surname: Das
  fullname: Das, Kalyan
  email: kalyandas1983@gmail.com
  organization: Dept. of CSE, SUIIT Sambalpur Univ., Sambalpur, India
– sequence: 2
  givenname: Satyabrata
  surname: Das
  fullname: Das, Satyabrata
  email: sb_das@vssut.ac.in
  organization: Dept. of CSE & IT, VSS Univ. of Technol., Sambalpur, India
– sequence: 3
  givenname: Ananya
  surname: Mishra
  fullname: Mishra, Ananya
  email: ananya.mishra@suiit.ac.in
  organization: Dept. of CSE, SUIIT Sambalpur Univ., Sambalpur, India
– sequence: 4
  givenname: Aurobindo
  surname: Mohapatra
  fullname: Mohapatra, Aurobindo
  email: aurobindo.mohapatra@suiit.ac.in
  organization: Dept. of CSE, SUIIT Sambalpur Univ., Sambalpur, India
BookMark eNotj8FqwzAQRFVoD22aL8hFP2BXq7Ul6xhMmhoCufgeVGvVCmwpyG4hf19Dc5rhwRuYF_YYUyTGdiBKAGHeurY79_tSCtBlIzQqMA9sa3QDNTYKlGn0MzseIuWvGyfvwxAoLtzZxfJrJheGJaTIp-Ro5D5lvnwTnynOax3G9OM4xd-QU5xW7ZU9eTvOtL3nhvXvh779KE7nY9fuT0UwYikGZzWiUxXIQSkytSSU3iGCM47qemW-RguuaipAK4AQqLIrdaA_K4kbtvufDUR0ueYw2Xy73N_hH9uUSgI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIOTA.2017.8073619
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538616987
153861698X
EndPage 3
ExternalDocumentID 8073619
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-cda733d6412c66e952e32fd331d9de5566ef53a1d48413a01e31e4a6efd17b423
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:12 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-cda733d6412c66e952e32fd331d9de5566ef53a1d48413a01e31e4a6efd17b423
PageCount 3
ParticipantIDs ieee_primary_8073619
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationTitle 2017 International Conference on IoT and Application (ICIOT)
PublicationTitleAbbrev ICIOTA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6816682
Snippet The sensors are used for many applications in the recent time. The sensors generally connect with each other wirelessly to form a Wireless Sensor Network...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
Cloud computing
Data models
Data prediction
Logistics
Meteorology
Prediction algorithms
Predictive models
Sensor Cloud
Wireless Sensor Network
Title Energy efficient data prediction model for the sensor cloud environment
URI https://ieeexplore.ieee.org/document/8073619
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhJGtuJ3YyoammRCgxF6lY5vquEQG0FycKv5-yE8iEGNstKlMS2dO9y771j7FIZSJy0RYQS0ih1Jov6GZ1lSnyE9hBFa693nt7p8WN6O8_mLXa11cIgYiCfYeyHoZYPa1f5X2W9Pp1H7T0-dyhxq7VajZGQSPLeZDC5n117tpaJmyt_tEwJEWO0x6afz6qJIs9xVRaxe_9lw_jfl9ln3S9tHn_YRp0D1sJVh90Mg4SPYzCEoPu4Z37yzasvw_il56HjDSeEygnx8TdKXmnoXtYV8G9aty6bjYazwThqWiRET3lSRg6sUQp0KqTTGvNMopJLUEpADpgRVMNlpqyAtE_ByiYClcDU0iwIUxCSOmTt1XqFR4yniZW-o53KFYRioJROLcFaMNZQTnTMOn4NFpvaBGPRfP7J39OnbNfvQ80MPGPt8rXCc4reZXERtu0DglyboA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUqGGAC1CK-8cBI0tiOnWZEVUsLbWEIUrfKsa8SArVVSRZ-PWcnlA8xsFlWoiS2pfcu994dIVcisZHhOg-A2ziITSKDjsSzjIEPU46iKOX8zuOJGjzFd1M5bZDrjRcGALz4DEI39Ll8uzSl-1XW7uB5VK7G5zbivmSVW6suJcSitD3sDh-yG6fXSsL62h9NUzxm9PfI-PNplVTkJSyLPDTvvwox_vd19knry51HHze4c0AasGiS25438VHwJSHwPuq0n3S1dokYt_jU97yhyFEpcj76huErDs3rsrT0m9utRbJ-L-sOgrpJQvCcRkVgrE6EsCpm3CgFqeQg-NwKwWxqQSJZg7kUmtm4g3ClIwaCQaxx1rIkRy51SLYWywUcERpHmruediIV1qcDOTdibrW2iU4wKjomTbcGs1VVBmNWf_7J39OXZGeQjUez0XByf0p23Z5UOsEzslWsSzhHLC_yC7-FH9Dznuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+International+Conference+on+IoT+and+Application+%28ICIOT%29&rft.atitle=Energy+efficient+data+prediction+model+for+the+sensor+cloud+environment&rft.au=Das%2C+Kalyan&rft.au=Das%2C+Satyabrata&rft.au=Mishra%2C+Ananya&rft.au=Mohapatra%2C+Aurobindo&rft.date=2017-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=3&rft_id=info:doi/10.1109%2FICIOTA.2017.8073619&rft.externalDocID=8073619