Facial Emotion Recognition Based on Viola-Jones Algorithm in the Learning Environment

An emotion is a trigger of learning success, so the learning should be adapting to the students' emotions. The most of popular approach is the acquisition of facial-based features. Therefore, we present facial emotion recognition based on the Viola-Jones Algorithm in the learning environment. B...

Full description

Saved in:
Bibliographic Details
Published in2018 International Seminar on Application for Technology of Information and Communication pp. 406 - 410
Main Authors Candra Kirana, Kartika, Wibawanto, Slamet, Wahyu Herwanto, Heru
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text
DOI10.1109/ISEMANTIC.2018.8549735

Cover

Abstract An emotion is a trigger of learning success, so the learning should be adapting to the students' emotions. The most of popular approach is the acquisition of facial-based features. Therefore, we present facial emotion recognition based on the Viola-Jones Algorithm in the learning environment. Basically, the Viola-Jones algorithm is a face detection algorithm. However, we use facial-based features to detect face and recognize emotion, thus we applied rectangular feature and cascading AdaBoost algorithm which are the main concept of the Viola-Jones Algorithm in those both of process. In this study, we compare accuracy, precision, recall, and time-consuming of the Viola-Jones algorithm and our previous methods [1] using 50 UM's learning images in student emotion recognition. The accuracy, precision, recall, and time-consuming of Viola-Jones algorithm reach 0.74, 0.73, 0.76 and 15 seconds per frame, whereas our previous methods [1] reach 0.46, 0.48, 0.52, and 42 seconds per frame. In emotional recognition, we can conclude that the viola jones algorithm is superior to our previous research.
AbstractList An emotion is a trigger of learning success, so the learning should be adapting to the students' emotions. The most of popular approach is the acquisition of facial-based features. Therefore, we present facial emotion recognition based on the Viola-Jones Algorithm in the learning environment. Basically, the Viola-Jones algorithm is a face detection algorithm. However, we use facial-based features to detect face and recognize emotion, thus we applied rectangular feature and cascading AdaBoost algorithm which are the main concept of the Viola-Jones Algorithm in those both of process. In this study, we compare accuracy, precision, recall, and time-consuming of the Viola-Jones algorithm and our previous methods [1] using 50 UM's learning images in student emotion recognition. The accuracy, precision, recall, and time-consuming of Viola-Jones algorithm reach 0.74, 0.73, 0.76 and 15 seconds per frame, whereas our previous methods [1] reach 0.46, 0.48, 0.52, and 42 seconds per frame. In emotional recognition, we can conclude that the viola jones algorithm is superior to our previous research.
Author Wibawanto, Slamet
Candra Kirana, Kartika
Wahyu Herwanto, Heru
Author_xml – sequence: 1
  givenname: Kartika
  surname: Candra Kirana
  fullname: Candra Kirana, Kartika
  organization: Department of Electrical Engineering, State University of Malang Jl Semarang No 5, Malang, Indonesia
– sequence: 2
  givenname: Slamet
  surname: Wibawanto
  fullname: Wibawanto, Slamet
  organization: Department of Electrical Engineering, State University of Malang Jl Semarang No 5, Malang, Indonesia
– sequence: 3
  givenname: Heru
  surname: Wahyu Herwanto
  fullname: Wahyu Herwanto, Heru
  organization: Department of Electrical Engineering, State University of Malang Jl Semarang No 5, Malang, Indonesia
BookMark eNotj99KwzAchSMo6OaeQJC8QGfSNP8ua-lmpSpo9XZk2S9dpE2kLYJvb9Fdne_mfIezQOchBkDolpI1pUTfVW_lU_7cVMU6JVStFc-0ZPwMLShnSshMCXGJVuP4SQhJhWKZZlfofWOsNx0u-zj5GPAr2NgG_8f3ZoQDnuHDx84kj_PciPOujYOfjj32AU9HwDWYIfjQ4jJ8-yGGHsJ0jS6c6UZYnXKJmk3ZFA9J_bKtirxOvCZTYq1IFZcMnLHSEcuBZ5Y4zrO9s1YKYag-SAqEai32mbTGcMesBsVdOtfYEt38az0A7L4G35vhZ3c6zn4BUshStg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISEMANTIC.2018.8549735
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538674866
9781538674864
EndPage 410
ExternalDocumentID 8549735
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-cc628573efac7f0c5e54c0f554bfcc766a19d71e01996b47caa5f3c9e85f273e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-cc628573efac7f0c5e54c0f554bfcc766a19d71e01996b47caa5f3c9e85f273e3
PageCount 5
ParticipantIDs ieee_primary_8549735
PublicationCentury 2000
PublicationDate 2018-September
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-September
PublicationDecade 2010
PublicationTitle 2018 International Seminar on Application for Technology of Information and Communication
PublicationTitleAbbrev ISEMANTIC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683493
Score 1.8263816
Snippet An emotion is a trigger of learning success, so the learning should be adapting to the students' emotions. The most of popular approach is the acquisition of...
SourceID ieee
SourceType Publisher
StartPage 406
SubjectTerms Biological neural networks
Classification algorithms
Emotion recognition
Face
Face detection
facial recognition
Feature extraction
learning emotion
Seminars
Viola-Jones algorithm
Title Facial Emotion Recognition Based on Viola-Jones Algorithm in the Learning Environment
URI https://ieeexplore.ieee.org/document/8549735
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ak178Acbf6cGjG2Nt1-2IZARMIEbBcCNt1-KiDkPGxb_e122AGg_eXpo0a_q2vb7X7_seQjdUSi3gt-_wUBOHGkhYJTO-4zNBAxFAiFeWnDwaB4MpvZ-xWQ3dbrkwWusCfKZdaxZ3-clSrW2prB1CMsMJq6M6vGYlV2tbT_GDkNCIVCTgjhe1h0_xqDueDHsWwBW61eQfXVSKINI_QKPN40vsyKu7zqWrPn8pM_53fYeotaPr4YdtIDpCNZ0do_1vSoNNNO0LWxvHcdm1Bz9ucENg30EgSzAYzynkuU6h3o-7b4vlKs1f3nGaYTgk4kqIdYHjHTWuhSb9eNIbOFVHBSeNvNxRyhImOdFGKG48xTSjyjNwopBGKR4EohMlvKM9C02WlCshmCEq0iG4D6aRE9TIYBGnCHNBaOJ7LElMBJ-9jiCTZoE0XPqhECE5Q027P_OPUjNjXm3N-d_DF2jP-qjEbl2iRr5a6ysI9rm8Lrz8BWs2qsY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD-rFH2D8bQ8eHY61XbcjkhFQRoyC4UbarkWigiHj4l_v6zZAjQdvL0uavPSl-_pev-89hK6olFrAb9_hgSYONZCwSmY8x2OC-sIHiFdWnBz3_PaA3g3ZsISuV1oYrXVGPtM1a2Zv-clMLWyp7CaAZIYTtoE2Afcpy9Vaq4qK5weEhqSQAdfd8KbzFMWNXr_TtBSuoFYs_zFHJYOR1i6Klw7k7JHX2iKVNfX5qzfjfz3cQ9W1YA8_rKBoH5X09ADtfOs1WEGDlrDVcRzlc3vw45I5BPYtQFmCwXieQKbrZP37ceNtPJtP0pd3PJliuCbiohXrGEdrcVwV9VtRv9l2ipkKziR0U0cpK5nkRBuhuHEV04wq18CdQhqluO-LepjwunYtOVlSroRghqhQBxBAWEYOUXkKThwhzAWhieeyJDEhHHwdQi7NfGm49AIhAnKMKnZ_Rh9514xRsTUnf3--RFvtftwddTu9-1O0beOVM7nOUDmdL_Q5QH8qL7KIfwGKOK4T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Seminar+on+Application+for+Technology+of+Information+and+Communication&rft.atitle=Facial+Emotion+Recognition+Based+on+Viola-Jones+Algorithm+in+the+Learning+Environment&rft.au=Candra+Kirana%2C+Kartika&rft.au=Wibawanto%2C+Slamet&rft.au=Wahyu+Herwanto%2C+Heru&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=406&rft.epage=410&rft_id=info:doi/10.1109%2FISEMANTIC.2018.8549735&rft.externalDocID=8549735