Robustness analysis of DNA-based biomolecular feedback controllers to parametric and time delay uncertainties

Recent advances in DNA computing have greatly facilitated the design of bimolecular circuitry based on DNA strand displacement reactions. An important issue to consider in the design process for such circuits is the effect of biological and experimental uncertainties on the functionality and reliabi...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) pp. 548 - 551
Main Authors Sawlekar, Rucha, Foo, Mathias, Bates, Declan G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2016
Subjects
Online AccessGet full text
DOI10.1109/BioCAS.2016.7833853

Cover

Abstract Recent advances in DNA computing have greatly facilitated the design of bimolecular circuitry based on DNA strand displacement reactions. An important issue to consider in the design process for such circuits is the effect of biological and experimental uncertainties on the functionality and reliability of the overall circuit. In the case of bimolecular feedback control circuits, such uncertainties could lead to a range of adverse effects, including achieving wrong concentration levels, sluggish performance and even instability. In this paper, we analyse the robustness properties of two biomolecular feedback controllers; a classical linear proportional integral (PI) and a recently proposed nonlinear quasi sliding mode (QSM) controller, subject to uncertainties in the experimentally implemented rates of their underlying chemical reactions, and to variations in accumulative time delays in the process to be controlled. Our results show that the nonlinear QSM controller is significantly more robust against investigated uncertainties, highlighting its potential as a practically implementable bimolecular feedback controller for future synthetic biology applications.
AbstractList Recent advances in DNA computing have greatly facilitated the design of bimolecular circuitry based on DNA strand displacement reactions. An important issue to consider in the design process for such circuits is the effect of biological and experimental uncertainties on the functionality and reliability of the overall circuit. In the case of bimolecular feedback control circuits, such uncertainties could lead to a range of adverse effects, including achieving wrong concentration levels, sluggish performance and even instability. In this paper, we analyse the robustness properties of two biomolecular feedback controllers; a classical linear proportional integral (PI) and a recently proposed nonlinear quasi sliding mode (QSM) controller, subject to uncertainties in the experimentally implemented rates of their underlying chemical reactions, and to variations in accumulative time delays in the process to be controlled. Our results show that the nonlinear QSM controller is significantly more robust against investigated uncertainties, highlighting its potential as a practically implementable bimolecular feedback controller for future synthetic biology applications.
Author Sawlekar, Rucha
Bates, Declan G.
Foo, Mathias
Author_xml – sequence: 1
  givenname: Rucha
  surname: Sawlekar
  fullname: Sawlekar, Rucha
  email: R.Sawlekar@warwick.ac.uk
  organization: Centre for Integrative Synthetic Biol., Univ. of Warwick, Coventry, UK
– sequence: 2
  givenname: Mathias
  surname: Foo
  fullname: Foo, Mathias
  email: M.Foo@warwick.ac.uk
  organization: Centre for Integrative Synthetic Biol., Univ. of Warwick, Coventry, UK
– sequence: 3
  givenname: Declan G.
  surname: Bates
  fullname: Bates, Declan G.
  email: D.Bates@warwick.ac.uk
  organization: Centre for Integrative Synthetic Biol., Univ. of Warwick, Coventry, UK
BookMark eNotkLtOwzAUQI0EAy18QRf_QILtPD2G8ChSBRJ0r27sa8nCsSvbGfL3VKLT0VnOcDbk1gePhOw4Kzln8unZhnH4KQXjbdn1VdU31Q3Z8IZJJmQj-T2Zv8O0pOwxJQoe3JpsosHQl8-hmCChppMNc3CoFgeRGkQ9gfqlKvgcg3MYE82BniHCjDladalomu2MVKODlS5eYcxgfbaYHsidAZfw8cotOb69Hsd9cfh6_xiHQ2Ely4VqQAM0fQu1QAPMdFI3rJWa1S122vTIWS3xIj0arJQwMCETLReGyxpNtSW7_6xFxNM52hnieroOqP4AxK5Y9g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioCAS.2016.7833853
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509029591
9781509029594
EndPage 551
ExternalDocumentID 7833853
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-c5adaa586a42efa0f79d5069d046e7df8e1049e46e8efe3c2fabe02612f194ef3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:23 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c5adaa586a42efa0f79d5069d046e7df8e1049e46e8efe3c2fabe02612f194ef3
PageCount 4
ParticipantIDs ieee_primary_7833853
PublicationCentury 2000
PublicationDate 2016-Oct.
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationTitle 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)
PublicationTitleAbbrev BioCAS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6111048
Snippet Recent advances in DNA computing have greatly facilitated the design of bimolecular circuitry based on DNA strand displacement reactions. An important issue to...
SourceID ieee
SourceType Publisher
StartPage 548
SubjectTerms Chemicals
Control systems
Delay effects
DNA
Process control
Robustness
Uncertainty
Title Robustness analysis of DNA-based biomolecular feedback controllers to parametric and time delay uncertainties
URI https://ieeexplore.ieee.org/document/7833853
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDyarm3apDnO6RjChuiE3UY-Ycytou1B_3rz2m6iePDWljQteSGvL_19IHTFlRGOhoqEoaUkiSJGFA85YYyDnl1KNQdy8mTKxs_J_Tydt9D1jgtjra3AZzaAw-pfvsl1CVtlfZ75giqlbdT206zmajVCQlEo-jfLfDh4ArQWC5qWPyxTqowx2keT7bNqoMgqKAsV6M9fMoz_fZkD1Pvm5uGHXdY5RC276aL1Y67K9wKWLSwbmRGcO3w7HRDIUwYDzX7rhIudv1lJvcINUP3FfwPiIsegA74Giy3tezEYfOcxqEh-YJ_9auwA6K_20Gx0NxuOSWOkQJYiLIhOpZEyzZhMYutk6LgwPg7C-NrYcuMy62syYf1JZp2lOnZS2UpbzEUisY4eoc4m39hjhGPFqZFcs8wXYknMZcSZ7xGWBZFIKk9QF0Zq8VpLZSyaQTr9-_IZ2oNo1di4c9Qp3kp74XN8oS6r4H4BdqqrQw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4MwGG7mPOhJzWb8tgePlsGAlh7ndJm6LUZnstvSz2SZG0bhoL_evsBmNB68AYFC-iZ9eOH5QOiCSc1t6Evi-yYkURBQIpnPCKUM_OziUDEQJw9HtP8c3U3iSQ1drrUwxpiCfGY82Cz-5etU5fCprMUS11DF4QbadLgfxaVaq7ISCnzeupql3c4T8LWoV537IzSlwIzeDhqu7lZSReZenklPff4yYvzv4-yi5rc6Dz-scWcP1cyygRaPqczfM1i4sKiMRnBq8fWoQwCpNAah_SoLF1t3sRRqjiuq-ot7C8RZisEJfAEhW8qNojEkz2PwkfzADv9K9gA4sDbRuHcz7vZJFaVAZtzPiIqFFiJOqIjaxgrfMq5dJbh23bFh2ibGdWXcuJ3EWBOqthXSFO5iNuCRseE-qi_TpTlAuC1ZqAVTNHGtWNRmImDUjQgLA49EKA5RA2Zq-lqaZUyrSTr6-_A52uqPh4Pp4HZ0f4y2oXIlU-4E1bO33Jw6xM_kWVHoL5cPrpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Biomedical+Circuits+and+Systems+Conference+%28BioCAS%29&rft.atitle=Robustness+analysis+of+DNA-based+biomolecular+feedback+controllers+to+parametric+and+time+delay+uncertainties&rft.au=Sawlekar%2C+Rucha&rft.au=Foo%2C+Mathias&rft.au=Bates%2C+Declan+G.&rft.date=2016-10-01&rft.pub=IEEE&rft.spage=548&rft.epage=551&rft_id=info:doi/10.1109%2FBioCAS.2016.7833853&rft.externalDocID=7833853