Image quality assessment for a selective-processing noise-aided iterative enhancement algorithm

This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing iterative enhancement algorithm. The original UIQ is based on factors of loss of correlation, luminance and contrast similarity, and is, therefo...

Full description

Saved in:
Bibliographic Details
Published in2016 Twenty Second National Conference on Communication (NCC) pp. 1 - 6
Main Authors Chouhan, Rajlaxmi, Biswas, Prabir Kumar
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2016
Subjects
Online AccessGet full text
DOI10.1109/NCC.2016.7561114

Cover

Loading…
Abstract This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing iterative enhancement algorithm. The original UIQ is based on factors of loss of correlation, luminance and contrast similarity, and is, therefore, unsuitable in enhancement-related applications. While testing existing state-of-the-art metrics as image quality criterion in an iterative dynamic range compression algorithm, a lack of coherence was observed between the objective scores and that obtained from subjective evaluation study with twenty human subjects. We, therefore, propose to modify the existing UIQ with properties of a tone-mapped image. The proposed variant, named image quality metric for dynamic range compression, IQ DRC , maintains the contributing effect of structural correlation and local contrast similarity, but observes an inverse relation with local luminance similarity. The proposed metric was observed to promisingly quantify the image quality and dynamic range compression of such images in close accordance with subjective scores for the target enhancement algorithm. Observations also suggest that IQ DRC is indicative of image quality for various other dynamic range compression algorithms.
AbstractList This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing iterative enhancement algorithm. The original UIQ is based on factors of loss of correlation, luminance and contrast similarity, and is, therefore, unsuitable in enhancement-related applications. While testing existing state-of-the-art metrics as image quality criterion in an iterative dynamic range compression algorithm, a lack of coherence was observed between the objective scores and that obtained from subjective evaluation study with twenty human subjects. We, therefore, propose to modify the existing UIQ with properties of a tone-mapped image. The proposed variant, named image quality metric for dynamic range compression, IQ DRC , maintains the contributing effect of structural correlation and local contrast similarity, but observes an inverse relation with local luminance similarity. The proposed metric was observed to promisingly quantify the image quality and dynamic range compression of such images in close accordance with subjective scores for the target enhancement algorithm. Observations also suggest that IQ DRC is indicative of image quality for various other dynamic range compression algorithms.
Author Chouhan, Rajlaxmi
Biswas, Prabir Kumar
Author_xml – sequence: 1
  givenname: Rajlaxmi
  surname: Chouhan
  fullname: Chouhan, Rajlaxmi
  email: rajlaxmi.chouhan@gmail.com
  organization: Indian Inst. of Technol., Mumbai, Mumbai, India
– sequence: 2
  givenname: Prabir Kumar
  surname: Biswas
  fullname: Biswas, Prabir Kumar
  email: pkb@ece.iitkgp.ernet.in
  organization: Indian Inst. of Technol., Kharagpur, Kharagpur, India
BookMark eNotjz1PwzAURY1EB1q6I7H4DyTYce3EI4r4qFSVpXv0Yj-nlhKn2Aap_54Cne5wz7nSXZLbMAck5IGzknOmn_ZtW1aMq7KWinO-uSFLLplmlVBc3pFuO8GA9PMLRp_PFFLClCYMmbo5UqAJRzTZf2NxirO5dD4MNMw-YQHeoqU-Y4RfgGI4QjD4J8M4zNHn43RPFg7GhOtrrsjh9eXQvhe7j7dt-7wrvGa5MBtjbaMk1nVvQdWSO1M1zjWmrkRjlTGi18JWzIJ2qDRvjGBSql66Xlw4sSKP_7MeEbtT9BPEc3e9LH4AYXJSzQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCC.2016.7561114
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509023615
9781509023615
EndPage 6
ExternalDocumentID 7561114
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-c4cdd865e77bda6751fc28ff8c7238d6cc3b93d20da9fe6918c30556b5fb38ff3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:43 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c4cdd865e77bda6751fc28ff8c7238d6cc3b93d20da9fe6918c30556b5fb38ff3
PageCount 6
ParticipantIDs ieee_primary_7561114
PublicationCentury 2000
PublicationDate 2016-March
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationTitle 2016 Twenty Second National Conference on Communication (NCC)
PublicationTitleAbbrev NCC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6035196
Snippet This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Dynamic range
Entropy
Heuristic algorithms
Image quality
Visualization
Title Image quality assessment for a selective-processing noise-aided iterative enhancement algorithm
URI https://ieeexplore.ieee.org/document/7561114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhxmjh2Es8VVUFqxVCkbpXPdmgFTSqaDvDr8UdbBGJgi6yzYvki31187z2EbsssF8BEYssSKIjNwDmRhU4IFRSoAE61Z9sfjbPhM3uc8mkL3e2xMMYY33xmIvfo7_J1rTbuV1kvt8E-carVB7ZwC1it3c1jLHrjft-1amXR1uyHXooPF4MjNNq9KHSJvEabBiL1-YuD8b8rOUbdb2AeftqHnBPUMlUHzR6W9lDAAR75geWeaxPbhBRLvPZSN_ZUI6uACrBTcVUv1oY4fkiNA7OyNcCmmruvwE-Wby_1-6KZL7toMrif9Idkq5tAFiJuiGJK6yLjJs9BS1sQJKWiRVkWygmM6UypFESqaaylKE0mkkJ5njDgJaTWLj1F7aquzBnCjKUUYqWBccZs5iAlA4iZ9Z-KOaT8HHXc3sxWgRljtt2Wi7-HL9Gh80_o4LpC7eZ9Y65tSG_gxvvyCw6vpV0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSkBoxve_Bol310Hz0TCSoQD5hw2_S1QpRdAstBf73TFjAaD942zTTbzGz6TbfzfYPQbZGkTFAWwLFEZAQy8JjwTAUkZKEImYhDZdX2h6Ok_0IfJ_Gkge52XBittS0-0555tHf5qpJr86uskwLYB6Zr9R7gPmWOrbW9e_RZZ9TtmmKtxNsY_uiYYgGjd4iG21e5OpE3b10LT37-UmH871qOUPubmoefd6BzjBq6bKH8YQ7bAnYEyQ_Md2qbGFJSzPHKNruBfY0sHC8ApuKymq00MQqRCjttZTDAupya78BO5u-v1XJWT-dtNO7dj7t9sumcQGbMr4mkUqksiXWaCsXhSBAUMsyKIpOmxZhKpIwEi1ToK84KnbAgk1YpTMSFiMAuOkHNsir1KcKURqHwpRLgcAq5A-dUCJ9CBKUfiyg-Qy3jm3zhtDHyjVvO_x6-Qfv98XCQDx5GTxfowMTK1XNdoma9XOsrAPhaXNu4fgHnQ6it
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+Twenty+Second+National+Conference+on+Communication+%28NCC%29&rft.atitle=Image+quality+assessment+for+a+selective-processing+noise-aided+iterative+enhancement+algorithm&rft.au=Chouhan%2C+Rajlaxmi&rft.au=Biswas%2C+Prabir+Kumar&rft.date=2016-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNCC.2016.7561114&rft.externalDocID=7561114