Image quality assessment for a selective-processing noise-aided iterative enhancement algorithm
This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing iterative enhancement algorithm. The original UIQ is based on factors of loss of correlation, luminance and contrast similarity, and is, therefo...
Saved in:
Published in | 2016 Twenty Second National Conference on Communication (NCC) pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/NCC.2016.7561114 |
Cover
Loading…
Abstract | This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing iterative enhancement algorithm. The original UIQ is based on factors of loss of correlation, luminance and contrast similarity, and is, therefore, unsuitable in enhancement-related applications. While testing existing state-of-the-art metrics as image quality criterion in an iterative dynamic range compression algorithm, a lack of coherence was observed between the objective scores and that obtained from subjective evaluation study with twenty human subjects. We, therefore, propose to modify the existing UIQ with properties of a tone-mapped image. The proposed variant, named image quality metric for dynamic range compression, IQ DRC , maintains the contributing effect of structural correlation and local contrast similarity, but observes an inverse relation with local luminance similarity. The proposed metric was observed to promisingly quantify the image quality and dynamic range compression of such images in close accordance with subjective scores for the target enhancement algorithm. Observations also suggest that IQ DRC is indicative of image quality for various other dynamic range compression algorithms. |
---|---|
AbstractList | This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing iterative enhancement algorithm. The original UIQ is based on factors of loss of correlation, luminance and contrast similarity, and is, therefore, unsuitable in enhancement-related applications. While testing existing state-of-the-art metrics as image quality criterion in an iterative dynamic range compression algorithm, a lack of coherence was observed between the objective scores and that obtained from subjective evaluation study with twenty human subjects. We, therefore, propose to modify the existing UIQ with properties of a tone-mapped image. The proposed variant, named image quality metric for dynamic range compression, IQ DRC , maintains the contributing effect of structural correlation and local contrast similarity, but observes an inverse relation with local luminance similarity. The proposed metric was observed to promisingly quantify the image quality and dynamic range compression of such images in close accordance with subjective scores for the target enhancement algorithm. Observations also suggest that IQ DRC is indicative of image quality for various other dynamic range compression algorithms. |
Author | Chouhan, Rajlaxmi Biswas, Prabir Kumar |
Author_xml | – sequence: 1 givenname: Rajlaxmi surname: Chouhan fullname: Chouhan, Rajlaxmi email: rajlaxmi.chouhan@gmail.com organization: Indian Inst. of Technol., Mumbai, Mumbai, India – sequence: 2 givenname: Prabir Kumar surname: Biswas fullname: Biswas, Prabir Kumar email: pkb@ece.iitkgp.ernet.in organization: Indian Inst. of Technol., Kharagpur, Kharagpur, India |
BookMark | eNotjz1PwzAURY1EB1q6I7H4DyTYce3EI4r4qFSVpXv0Yj-nlhKn2Aap_54Cne5wz7nSXZLbMAck5IGzknOmn_ZtW1aMq7KWinO-uSFLLplmlVBc3pFuO8GA9PMLRp_PFFLClCYMmbo5UqAJRzTZf2NxirO5dD4MNMw-YQHeoqU-Y4RfgGI4QjD4J8M4zNHn43RPFg7GhOtrrsjh9eXQvhe7j7dt-7wrvGa5MBtjbaMk1nVvQdWSO1M1zjWmrkRjlTGi18JWzIJ2qDRvjGBSql66Xlw4sSKP_7MeEbtT9BPEc3e9LH4AYXJSzQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NCC.2016.7561114 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1509023615 9781509023615 |
EndPage | 6 |
ExternalDocumentID | 7561114 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-c4cdd865e77bda6751fc28ff8c7238d6cc3b93d20da9fe6918c30556b5fb38ff3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:43 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-c4cdd865e77bda6751fc28ff8c7238d6cc3b93d20da9fe6918c30556b5fb38ff3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7561114 |
PublicationCentury | 2000 |
PublicationDate | 2016-March |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-March |
PublicationDecade | 2010 |
PublicationTitle | 2016 Twenty Second National Conference on Communication (NCC) |
PublicationTitleAbbrev | NCC |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6035196 |
Snippet | This paper presents a revision of the existing universal image quality index (UIQ) metric in order to gauge the quality of images in a selective-processing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Dynamic range Entropy Heuristic algorithms Image quality Visualization |
Title | Image quality assessment for a selective-processing noise-aided iterative enhancement algorithm |
URI | https://ieeexplore.ieee.org/document/7561114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhxmjh2Es8VVUFqxVCkbpXPdmgFTSqaDvDr8UdbBGJgi6yzYvki31187z2EbsssF8BEYssSKIjNwDmRhU4IFRSoAE61Z9sfjbPhM3uc8mkL3e2xMMYY33xmIvfo7_J1rTbuV1kvt8E-carVB7ZwC1it3c1jLHrjft-1amXR1uyHXooPF4MjNNq9KHSJvEabBiL1-YuD8b8rOUbdb2AeftqHnBPUMlUHzR6W9lDAAR75geWeaxPbhBRLvPZSN_ZUI6uACrBTcVUv1oY4fkiNA7OyNcCmmruvwE-Wby_1-6KZL7toMrif9Idkq5tAFiJuiGJK6yLjJs9BS1sQJKWiRVkWygmM6UypFESqaaylKE0mkkJ5njDgJaTWLj1F7aquzBnCjKUUYqWBccZs5iAlA4iZ9Z-KOaT8HHXc3sxWgRljtt2Wi7-HL9Gh80_o4LpC7eZ9Y65tSG_gxvvyCw6vpV0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSkBoxve_Bol310Hz0TCSoQD5hw2_S1QpRdAstBf73TFjAaD942zTTbzGz6TbfzfYPQbZGkTFAWwLFEZAQy8JjwTAUkZKEImYhDZdX2h6Ok_0IfJ_Gkge52XBittS0-0555tHf5qpJr86uskwLYB6Zr9R7gPmWOrbW9e_RZZ9TtmmKtxNsY_uiYYgGjd4iG21e5OpE3b10LT37-UmH871qOUPubmoefd6BzjBq6bKH8YQ7bAnYEyQ_Md2qbGFJSzPHKNruBfY0sHC8ApuKymq00MQqRCjttZTDAupya78BO5u-v1XJWT-dtNO7dj7t9sumcQGbMr4mkUqksiXWaCsXhSBAUMsyKIpOmxZhKpIwEi1ToK84KnbAgk1YpTMSFiMAuOkHNsir1KcKURqHwpRLgcAq5A-dUCJ9CBKUfiyg-Qy3jm3zhtDHyjVvO_x6-Qfv98XCQDx5GTxfowMTK1XNdoma9XOsrAPhaXNu4fgHnQ6it |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+Twenty+Second+National+Conference+on+Communication+%28NCC%29&rft.atitle=Image+quality+assessment+for+a+selective-processing+noise-aided+iterative+enhancement+algorithm&rft.au=Chouhan%2C+Rajlaxmi&rft.au=Biswas%2C+Prabir+Kumar&rft.date=2016-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FNCC.2016.7561114&rft.externalDocID=7561114 |