Research and Implementation of Massive Health Care Data Management and Analysis Based on Hadoop

New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or PHR to provide medical advises to patients, while through data analysis the result statistics can be used to support the scientific research....

Full description

Saved in:
Bibliographic Details
Published in2012 Fourth International Conference on Computational and Information Sciences pp. 514 - 517
Main Authors Hongyong Yu, Deshuai Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2012
Subjects
Online AccessGet full text
ISBN9781467324069
146732406X
DOI10.1109/ICCIS.2012.225

Cover

Loading…
Abstract New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or PHR to provide medical advises to patients, while through data analysis the result statistics can be used to support the scientific research. However, RDBMSs-based framework is not able to support the requirements of massive health care data storage, management and analysis. To solve the problem, this paper proposes a massive data management and analysis solution based on Hadoop to archive better performance, scalability and fault tolerance. The data management framework is presented. Besides, 2 different data analysis methods based on MapReduce and Hive are proposed. Experiment results of data upload, data query and data analysis show that the performance of the proposed framework is greatly improved, and a brief summary of the performance and the differences between 2 methods of MapReduce and Hive is also discussed.
AbstractList New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or PHR to provide medical advises to patients, while through data analysis the result statistics can be used to support the scientific research. However, RDBMSs-based framework is not able to support the requirements of massive health care data storage, management and analysis. To solve the problem, this paper proposes a massive data management and analysis solution based on Hadoop to archive better performance, scalability and fault tolerance. The data management framework is presented. Besides, 2 different data analysis methods based on MapReduce and Hive are proposed. Experiment results of data upload, data query and data analysis show that the performance of the proposed framework is greatly improved, and a brief summary of the performance and the differences between 2 methods of MapReduce and Hive is also discussed.
Author Deshuai Wang
Hongyong Yu
Author_xml – sequence: 1
  surname: Hongyong Yu
  fullname: Hongyong Yu
  email: yuhy@neusoft.com
  organization: State Key Lab. of Software Archit., Neusoft Corp., Shenyang, China
– sequence: 2
  surname: Deshuai Wang
  fullname: Deshuai Wang
  email: wangdeshuai@neusoft.com
  organization: State Key Lab. of Software Archit., Neusoft Corp., Shenyang, China
BookMark eNotTstOwzAQNAIkaOmVCxf_QMvaG8fxsYRCIhUhQe_V1tnQoNSp4gipf09UmMus5rGaibgKXWAh7hUslAL3WOZ5-bnQoPRCa3MhJmBTZxKbObwUM2czlaQWdQKpuxGzGL9hxKiCxVux_eDI1Pu9pFDJ8nBs-cBhoKHpguxq-UYxNj8sC6Z22MucepbPNNBoBPo6Z8_NZaD2FJsonyhyJcdyQVXXHe_EdU1t5Nk_T8XmZbXJi_n6_bXMl-t542CYe0BkUGgw3Y27PSldJUjjlVnKNBHhjn3lOalT4wygVQatYV_XChk9TsXD39uGmbfHvjlQf9qmCGCMxV9yWlXX
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIS.2012.225
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 0769547893
9780769547893
EndPage 517
ExternalDocumentID 6300557
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-c033e013536b789ca12d43a89c87a82aaa3becdce4f659503715375ecff13e3c3
IEDL.DBID RIE
ISBN 9781467324069
146732406X
IngestDate Wed Aug 27 05:15:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c033e013536b789ca12d43a89c87a82aaa3becdce4f659503715375ecff13e3c3
PageCount 4
ParticipantIDs ieee_primary_6300557
PublicationCentury 2000
PublicationDate 2012-Aug.
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-Aug.
PublicationDecade 2010
PublicationTitle 2012 Fourth International Conference on Computational and Information Sciences
PublicationTitleAbbrev iccis
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781073
Score 1.5333034
Snippet New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or...
SourceID ieee
SourceType Publisher
StartPage 514
SubjectTerms Blood pressure
Data analysis
Distributed databases
EMR
Hadoop
health care data
massive data analysis
massive data management
Medical services
Memory
Monitoring
PHR
Servers
Title Research and Implementation of Massive Health Care Data Management and Analysis Based on Hadoop
URI https://ieeexplore.ieee.org/document/6300557
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDtpMnlU38TQ4ebdc2aZNenY5NmAhO2G0k6QuI2A7pLv715qXtJuLBW1oIhKTkpS_f7-cRciOkjvGCL2A80wEvpA00AxNYZQTERjLw5YAWT9nslT-u0lWP3O68MADgxWcQYtPf5ReV2WKqbIx4qDQVfdJ3P26NV2uXT0FojftcvXcrE4iZy1Yd0ql9zltoYxzl4_lkMn9BZVcSJlgm-0dpFR9Zpodk0Y2pEZS8h9tah-brF67xv4M-IqO9h48-76LTMelBOSTrTmhHVVlQTwb-aM1HJa0sXbijtNv-aGNOomhOoveqVnSvkvE9O5QJvXNBsKCus9vBqmozIsvpw3IyC9oSC8FbHtWBiRiDCEtfZFrI3Kg4KThTriWFkolSirk1Lgxwi9xBxPulTKRgrMXsqWEnZFBWJZwSiucsA5liUS65VZk2eQFcx5rbKJVanJEhzs1600A01u20nP_9-oIc4No0SrtLMqg_t3Dlon-tr_2yfwPtHqwM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDnAc9qWzib3PwaLt2SZv06nRsug7BCbuVJE1AxHZId_GvNy9tNxEP3tJCICQh75F8v5-H0A3jMoQHPo_QWHo058aTRCvPCMV0qDjRrhxQOo8nr_RxGS076HbjhdFaO_GZ9qHp3vLzUq3hqmwAeKgoYjto18b9KKzdWpsbFcDW2A3r3FsxA9BcvGyhTs130mAbwyAZTEej6Qtou4b-EApl_yiu4mLL-ACl7ahqScm7v66kr75-ARv_O-xD1N-6-PDzJj4doY4ueihrpXZYFDl2bOCPxn5U4NLg1CbT9gDEtT0Jgz0J34tK4K1OxvVsYSb4zobBHNvO9gwry1UfLcYPi9HEa4oseG9JUHkqIEQHUPwilownSoTDnBJhW5wJPhRCELvKudLUAHkQAH8RYZFWxsD9qSLHqFuUhT5BGDItpWNBgoRTI2KpklxTGUpqgohLdop6MDfZqsZoZM20nP39-xrtTRbpLJtN50_naB_WqdbdXaBu9bnWlzYXqOSV2wLfGruvVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Fourth+International+Conference+on+Computational+and+Information+Sciences&rft.atitle=Research+and+Implementation+of+Massive+Health+Care+Data+Management+and+Analysis+Based+on+Hadoop&rft.au=Hongyong+Yu&rft.au=Deshuai+Wang&rft.date=2012-08-01&rft.pub=IEEE&rft.isbn=9781467324069&rft.spage=514&rft.epage=517&rft_id=info:doi/10.1109%2FICCIS.2012.225&rft.externalDocID=6300557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467324069/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467324069/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467324069/sc.gif&client=summon&freeimage=true