Research and Implementation of Massive Health Care Data Management and Analysis Based on Hadoop
New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or PHR to provide medical advises to patients, while through data analysis the result statistics can be used to support the scientific research....
Saved in:
Published in | 2012 Fourth International Conference on Computational and Information Sciences pp. 514 - 517 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467324069 146732406X |
DOI | 10.1109/ICCIS.2012.225 |
Cover
Loading…
Abstract | New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or PHR to provide medical advises to patients, while through data analysis the result statistics can be used to support the scientific research. However, RDBMSs-based framework is not able to support the requirements of massive health care data storage, management and analysis. To solve the problem, this paper proposes a massive data management and analysis solution based on Hadoop to archive better performance, scalability and fault tolerance. The data management framework is presented. Besides, 2 different data analysis methods based on MapReduce and Hive are proposed. Experiment results of data upload, data query and data analysis show that the performance of the proposed framework is greatly improved, and a brief summary of the performance and the differences between 2 methods of MapReduce and Hive is also discussed. |
---|---|
AbstractList | New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or PHR to provide medical advises to patients, while through data analysis the result statistics can be used to support the scientific research. However, RDBMSs-based framework is not able to support the requirements of massive health care data storage, management and analysis. To solve the problem, this paper proposes a massive data management and analysis solution based on Hadoop to archive better performance, scalability and fault tolerance. The data management framework is presented. Besides, 2 different data analysis methods based on MapReduce and Hive are proposed. Experiment results of data upload, data query and data analysis show that the performance of the proposed framework is greatly improved, and a brief summary of the performance and the differences between 2 methods of MapReduce and Hive is also discussed. |
Author | Deshuai Wang Hongyong Yu |
Author_xml | – sequence: 1 surname: Hongyong Yu fullname: Hongyong Yu email: yuhy@neusoft.com organization: State Key Lab. of Software Archit., Neusoft Corp., Shenyang, China – sequence: 2 surname: Deshuai Wang fullname: Deshuai Wang email: wangdeshuai@neusoft.com organization: State Key Lab. of Software Archit., Neusoft Corp., Shenyang, China |
BookMark | eNotTstOwzAQNAIkaOmVCxf_QMvaG8fxsYRCIhUhQe_V1tnQoNSp4gipf09UmMus5rGaibgKXWAh7hUslAL3WOZ5-bnQoPRCa3MhJmBTZxKbObwUM2czlaQWdQKpuxGzGL9hxKiCxVux_eDI1Pu9pFDJ8nBs-cBhoKHpguxq-UYxNj8sC6Z22MucepbPNNBoBPo6Z8_NZaD2FJsonyhyJcdyQVXXHe_EdU1t5Nk_T8XmZbXJi_n6_bXMl-t542CYe0BkUGgw3Y27PSldJUjjlVnKNBHhjn3lOalT4wygVQatYV_XChk9TsXD39uGmbfHvjlQf9qmCGCMxV9yWlXX |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCIS.2012.225 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 0769547893 9780769547893 |
EndPage | 517 |
ExternalDocumentID | 6300557 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i90t-c033e013536b789ca12d43a89c87a82aaa3becdce4f659503715375ecff13e3c3 |
IEDL.DBID | RIE |
ISBN | 9781467324069 146732406X |
IngestDate | Wed Aug 27 05:15:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-c033e013536b789ca12d43a89c87a82aaa3becdce4f659503715375ecff13e3c3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6300557 |
PublicationCentury | 2000 |
PublicationDate | 2012-Aug. |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-Aug. |
PublicationDecade | 2010 |
PublicationTitle | 2012 Fourth International Conference on Computational and Information Sciences |
PublicationTitleAbbrev | iccis |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000781073 |
Score | 1.5333034 |
Snippet | New generation of health care IT systems are collecting and storing more and more data of patients. Useful knowledge can be extracted from the data in EMR or... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 514 |
SubjectTerms | Blood pressure Data analysis Distributed databases EMR Hadoop health care data massive data analysis massive data management Medical services Memory Monitoring PHR Servers |
Title | Research and Implementation of Massive Health Care Data Management and Analysis Based on Hadoop |
URI | https://ieeexplore.ieee.org/document/6300557 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDtpMnlU38TQ4ebdc2aZNenY5NmAhO2G0k6QuI2A7pLv715qXtJuLBW1oIhKTkpS_f7-cRciOkjvGCL2A80wEvpA00AxNYZQTERjLw5YAWT9nslT-u0lWP3O68MADgxWcQYtPf5ReV2WKqbIx4qDQVfdJ3P26NV2uXT0FojftcvXcrE4iZy1Yd0ql9zltoYxzl4_lkMn9BZVcSJlgm-0dpFR9Zpodk0Y2pEZS8h9tah-brF67xv4M-IqO9h48-76LTMelBOSTrTmhHVVlQTwb-aM1HJa0sXbijtNv-aGNOomhOoveqVnSvkvE9O5QJvXNBsKCus9vBqmozIsvpw3IyC9oSC8FbHtWBiRiDCEtfZFrI3Kg4KThTriWFkolSirk1Lgxwi9xBxPulTKRgrMXsqWEnZFBWJZwSiucsA5liUS65VZk2eQFcx5rbKJVanJEhzs1600A01u20nP_9-oIc4No0SrtLMqg_t3Dlon-tr_2yfwPtHqwM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDnAc9qWzib3PwaLt2SZv06nRsug7BCbuVJE1AxHZId_GvNy9tNxEP3tJCICQh75F8v5-H0A3jMoQHPo_QWHo058aTRCvPCMV0qDjRrhxQOo8nr_RxGS076HbjhdFaO_GZ9qHp3vLzUq3hqmwAeKgoYjto18b9KKzdWpsbFcDW2A3r3FsxA9BcvGyhTs130mAbwyAZTEej6Qtou4b-EApl_yiu4mLL-ACl7ahqScm7v66kr75-ARv_O-xD1N-6-PDzJj4doY4ueihrpXZYFDl2bOCPxn5U4NLg1CbT9gDEtT0Jgz0J34tK4K1OxvVsYSb4zobBHNvO9gwry1UfLcYPi9HEa4oseG9JUHkqIEQHUPwilownSoTDnBJhW5wJPhRCELvKudLUAHkQAH8RYZFWxsD9qSLHqFuUhT5BGDItpWNBgoRTI2KpklxTGUpqgohLdop6MDfZqsZoZM20nP39-xrtTRbpLJtN50_naB_WqdbdXaBu9bnWlzYXqOSV2wLfGruvVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Fourth+International+Conference+on+Computational+and+Information+Sciences&rft.atitle=Research+and+Implementation+of+Massive+Health+Care+Data+Management+and+Analysis+Based+on+Hadoop&rft.au=Hongyong+Yu&rft.au=Deshuai+Wang&rft.date=2012-08-01&rft.pub=IEEE&rft.isbn=9781467324069&rft.spage=514&rft.epage=517&rft_id=info:doi/10.1109%2FICCIS.2012.225&rft.externalDocID=6300557 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467324069/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467324069/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467324069/sc.gif&client=summon&freeimage=true |