The Implementation of FEM and RBF Neural Network in EIT

With the rapid development of electronic technology, semiconductor section resistivity measurement is receiving increasing attention. This paper applies electrical impedance tomography (EIT) technology to semiconductor resistivity measurements. FEM is applied to solve the EIT forward problem. Mathem...

Full description

Saved in:
Bibliographic Details
Published in2009 Second International Conference on Intelligent Networks and Intelligent Systems pp. 66 - 69
Main Authors Peng Wang, Hong-li Li, Li-li Xie, Yi-cai Sun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2009
Subjects
Online AccessGet full text
ISBN142445557X
9781424455577
DOI10.1109/ICINIS.2009.26

Cover

Loading…
Abstract With the rapid development of electronic technology, semiconductor section resistivity measurement is receiving increasing attention. This paper applies electrical impedance tomography (EIT) technology to semiconductor resistivity measurements. FEM is applied to solve the EIT forward problem. Mathematical description of partial differential equation, equivalent variation differential problem, element characteristic matrix and the assembly rule of general matrix are given for calculation. To solve the EIT inverse problem, a new method of image reconstruction algorithm based on RBF neural network is proposed. This method can well adapt to non-linear and ill-posed characteristics of EIT. The simulation experiment results indicate that the RBF algorithm can improve the reconstruction image's quality and the accuracy obviously.
AbstractList With the rapid development of electronic technology, semiconductor section resistivity measurement is receiving increasing attention. This paper applies electrical impedance tomography (EIT) technology to semiconductor resistivity measurements. FEM is applied to solve the EIT forward problem. Mathematical description of partial differential equation, equivalent variation differential problem, element characteristic matrix and the assembly rule of general matrix are given for calculation. To solve the EIT inverse problem, a new method of image reconstruction algorithm based on RBF neural network is proposed. This method can well adapt to non-linear and ill-posed characteristics of EIT. The simulation experiment results indicate that the RBF algorithm can improve the reconstruction image's quality and the accuracy obviously.
Author Peng Wang
Hong-li Li
Li-li Xie
Yi-cai Sun
Author_xml – sequence: 1
  surname: Peng Wang
  fullname: Peng Wang
  organization: Sch. of Comput. Sci. & Eng., Hebei Univ. of Technol., Tianjin, China
– sequence: 2
  surname: Hong-li Li
  fullname: Hong-li Li
  organization: Electron. & Inf. Eng., Tianjin Vocational Inst., Tianjin, China
– sequence: 3
  surname: Li-li Xie
  fullname: Li-li Xie
  organization: Electron. & Inf. Eng., Tianjin Vocational Inst., Tianjin, China
– sequence: 4
  surname: Yi-cai Sun
  fullname: Yi-cai Sun
  organization: Sch. of Inf. Eng., Hebei Univ. of Technol., Tianjin, China
BookMark eNotzLtOhEAUgOExaqK70trYzAsszu3MpVQCSrKuiVLYbQaYE1EYNoAxvr2b6N983b8iZ3GMgZBrzlLOmbsts3JXvqaCMZcKfUISZywz2oG0IOCUrLgSSgGAebsgyTx_sGMKhJT2kpjqPdByOPRhCHHxSzdGOiIt8ifqY0tf7gu6C1-T748s3-P0SbtI87K6Iufo-zkk_65JVeRV9rjZPj-U2d120zm2bGoU6KyWrUKumwZQBYPC2aYVpm1qDIxbGZxB5JaB8WhrYKCgQQdCSS_X5OZv24UQ9oepG_z0swepQRuQv_dBRtc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICINIS.2009.26
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9780769538525
0769538525
EndPage 69
ExternalDocumentID 5365675
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-bf2f9863d4f16cc5f4e7f298cd27dcbfe0183e97ff18057af8b50545cf95243a3
IEDL.DBID RIE
ISBN 142445557X
9781424455577
IngestDate Wed Aug 27 02:50:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-bf2f9863d4f16cc5f4e7f298cd27dcbfe0183e97ff18057af8b50545cf95243a3
PageCount 4
ParticipantIDs ieee_primary_5365675
PublicationCentury 2000
PublicationDate 2009-Nov.
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-Nov.
PublicationDecade 2000
PublicationTitle 2009 Second International Conference on Intelligent Networks and Intelligent Systems
PublicationTitleAbbrev ICINIS
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452338
ssib026766953
Score 1.4912426
Snippet With the rapid development of electronic technology, semiconductor section resistivity measurement is receiving increasing attention. This paper applies...
SourceID ieee
SourceType Publisher
StartPage 66
SubjectTerms Conductivity measurement
Electrical impedance tomography
Equations
Finite element method
Finite element methods
Image reconstruction
Impedance
Intelligent networks
Inverse problems
Neural networks
RBF neural network
semiconductor section resistivity
Tomography
Voltage
Title The Implementation of FEM and RBF Neural Network in EIT
URI https://ieeexplore.ieee.org/document/5365675
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJm8TvlapRi9QKQZG6VfHjpApIEUoXfj2OkxSEGJj8GCyf_Lg7332fEbqBxDirmIwMWBFRQVmkndX-XCmivX7UJK8cxfmCT5_p_YqtOuh2j4VxzoXkMzesqiGWb7dmVz2VjRjx1odgXdT1jluN1Wr3TsoF521EKNzC1LtYRLZYLsaYWLUUT01bNCSOSaxGs_FsMXuq-SsrooUfX60ETZMdonk7xzrB5GW4K_XQfP6ib_yvEEdo8I3pww97bXWMOq7oI-F3CQ4EwW8NBqnAW8DZZI7zwuLHuwxX7B35qy9CujjeFHgyWw7QMpssx9Oo-Uoh2qi4jDSkoCQnlkLCjWFAnYBUSWNTYY0GF_uT7ZQASKQ34HKQ2ltGlBlQLKUkJyeoV2wLd4pwAklqndZcspha7mTuh4NcGW_YEM7hDPUrmdfvNVnGuhH3_O_uC3QQwjMB3HeJeuXHzl15LV_q67C8X7kwoRs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkbRO_V6pGDTQVgiB1q-KXhIAUoXTh1-M4SUGIgcmPwfLJZ9_Zd99nAK5sqIwWhAfKahZghkkgjZZuXwkknX2UKK8uiumcTp_w7YIsOuB6g4UxxvjkMzOoqj6Wr1dqXT2VDQly3gcjW2CbVGDcGq3Vak9EGaVtTMifw9hdshBv0VyEELZoSZ6aNmtoHMORGCbjZJ481gyWFdXCj89WvK2J90DazrJOMXkZrEs5UJ-_CBz_K8Y-6H-j-uD9xl4dgI4peoA5PYGeIvitQSEVcGVhPElhXmj4cBPDir8jf3WFTxiHzwWcJFkfZPEkG0-D5jOF4FmMykDayApOkcY2pEoRiw2zkeBKR0wrac3I7W0jmLUhdy5cbrl0vhEmygoSYZSjQ9AtVoU5AjC0YaSNlJSTEdbU8NwNZ3OhnGuDKLXHoFfJvHyv6TKWjbgnf3dfgp1pls6Ws2R-dwp2fbDGQ_3OQLf8WJtzZ_NLeeGX-gtZDqRj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+Second+International+Conference+on+Intelligent+Networks+and+Intelligent+Systems&rft.atitle=The+Implementation+of+FEM+and+RBF+Neural+Network+in+EIT&rft.au=Peng+Wang&rft.au=Hong-li+Li&rft.au=Li-li+Xie&rft.au=Yi-cai+Sun&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424455577&rft.spage=66&rft.epage=69&rft_id=info:doi/10.1109%2FICINIS.2009.26&rft.externalDocID=5365675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424455577/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424455577/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424455577/sc.gif&client=summon&freeimage=true