Compressed sensing for different sensors: A real scenario for WSN and IoT

Wireless Sensor Networks (WSN) are integrable basic elements of Internet of Things (IoT). WSN deployment is constrained with sensor node's energy, communication range, limited on-board resources etc. Optimization of the energy consumption over the network to improve network lifetime is a challe...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) pp. 289 - 294
Main Authors Amarlingam, M., Mishra, Pradeep Kumar, Durga Prasad, K.V.V., Rajalakshmi, P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wireless Sensor Networks (WSN) are integrable basic elements of Internet of Things (IoT). WSN deployment is constrained with sensor node's energy, communication range, limited on-board resources etc. Optimization of the energy consumption over the network to improve network lifetime is a challenging problem. Compressed Sensing (CS) involvement in WSN brought a solution to energy efficient data aggregation. This article presents a method, which exploits compressed sensing and dictionary learning to achieve energy efficiency in the scenario of data aggregation in WSN, where sensor node measures different sensors data. We demonstrate performance analysis of multiple sensors method with metrics, probability of successful recovery and network transmission cost. Extensive simulations on practical data set shows that our data aggregation method for practical scenario can deliver data to sink with minimum transmission cost which inherently saves significant energy to prolong the network lifetime. The probability of successful recovery shows that our method can recover compressed data with maximum probability.
AbstractList Wireless Sensor Networks (WSN) are integrable basic elements of Internet of Things (IoT). WSN deployment is constrained with sensor node's energy, communication range, limited on-board resources etc. Optimization of the energy consumption over the network to improve network lifetime is a challenging problem. Compressed Sensing (CS) involvement in WSN brought a solution to energy efficient data aggregation. This article presents a method, which exploits compressed sensing and dictionary learning to achieve energy efficiency in the scenario of data aggregation in WSN, where sensor node measures different sensors data. We demonstrate performance analysis of multiple sensors method with metrics, probability of successful recovery and network transmission cost. Extensive simulations on practical data set shows that our data aggregation method for practical scenario can deliver data to sink with minimum transmission cost which inherently saves significant energy to prolong the network lifetime. The probability of successful recovery shows that our method can recover compressed data with maximum probability.
Author Amarlingam, M.
Mishra, Pradeep Kumar
Rajalakshmi, P.
Durga Prasad, K.V.V.
Author_xml – sequence: 1
  givenname: M.
  surname: Amarlingam
  fullname: Amarlingam, M.
  email: ee13p1003@iith.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
– sequence: 2
  givenname: Pradeep Kumar
  surname: Mishra
  fullname: Mishra, Pradeep Kumar
  email: pradeepmishra@iith.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
– sequence: 3
  givenname: K.V.V.
  surname: Durga Prasad
  fullname: Durga Prasad, K.V.V.
  email: ee15mtech11023@iith.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
– sequence: 4
  givenname: P.
  surname: Rajalakshmi
  fullname: Rajalakshmi, P.
  email: raji@iith.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
BookMark eNotj81KAzEUhSPoQmufoJu8wIy5k7-JuzJYHSh14UCXJZPcSKBNStKNb6_Urg4cPs7HeSL3KSckZAWsBWDmZb9pxjy1HQPV6l5I0es7sjS6B8kME8CZfCTjkE_ngrWipxVTjembhlyojyFgwXS5trnUV7qmBe2RVofJlpiv2P5rR23y9E_0TB6CPVZc3nJBps3bNHw028_3cVhvm2jYpZlROyW8CKDZzMAhguCKWQhzpzi4gG7WToYA0gnTGSMFGGWd1n3vNQJfkNX_bETEw7nEky0_h9s__gsAkknA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WF-IoT.2016.7845487
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509041305
1509041303
EndPage 294
ExternalDocumentID 7845487
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-be7c64d4f170b01cee14360a1fb2631cfecb7c5ff15c4929954196ac7788d7e13
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:59 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-be7c64d4f170b01cee14360a1fb2631cfecb7c5ff15c4929954196ac7788d7e13
PageCount 6
ParticipantIDs ieee_primary_7845487
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT)
PublicationTitleAbbrev WF-IoT
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7785648
Snippet Wireless Sensor Networks (WSN) are integrable basic elements of Internet of Things (IoT). WSN deployment is constrained with sensor node's energy,...
SourceID ieee
SourceType Publisher
StartPage 289
SubjectTerms Compressed sensing
Data aggregation
Internet of Things
Monitoring
Multiplexing
Temperature measurement
Wireless sensor networks
Title Compressed sensing for different sensors: A real scenario for WSN and IoT
URI https://ieeexplore.ieee.org/document/7845487
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1tT55UWvGbHDyabbJNNl1vIpZWaBGstLeSZCciyq60uxd_vUl2W1E8eAshkC-SeZO8eYPQlVRDzmLnnYhYc-JuP01SqjOiYmAcOFhhfaDwdJaMn_nDUixb6HoXCwMAgXwGkS-Gv_ysMJV_KuvLIfcAu43aMk3rWK1GSIjRtL8YkUkx92ytJGpa_kiZEizGaB9Nt33VRJG3qCp1ZD5_yTD-dzAHqPcdm4cfd1bnELUg76KJP9ZBBjzDG09Jz1-wQ6N4m_6kDLXFenODb7GDie_Yizg5N7kIzRZPM6zyDLuJ9dB8dD-_G5MmSQJ5TWlJNEiT8IxbJv2TpuvcAaCEKmZ1nAyYsWC0NMJaJgx3UCgV3J05ZaRzfTMJbHCEOnmRwzHCInauB6VADeUcpNJAs2E8UIl1mEVzdYK6fhVWH7UMxqpZgNO_q8_Qnt-JmvlxjjrluoILZ79LfRk27gsM_Zyu
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedCTyib-NgePtku6tGm9iTg23YbgZLuNJH0RUVrZuot_vUlbJ4oHbyEE8ovkfS_53vcALoSMOQusdxIGinv29lNeQlXqyQAZR44mNC5QeDSO-k_8bhbOGnC5joVBxJJ8hr4rln_5aa5X7qmsI2LuAPYGbFpcHYsqWquWEmI06Ux73iCfOL5W5NdtfyRNKW1GbwdGX71VVJFXf1UoX3_8EmL873B2of0dnUce1nZnDxqYtWDgDnYpBJ6SpSOlZ8_E4lHylQClKGvzxfKKXBMLFN-Ik3GyjnJeNps-jonMUmIn1oZJ73Zy0_fqNAneS0ILT6HQEU-5YcI9atrOLQSKqGRGBVGXaYNaCR0aw0LNLRhKQm5PndTCOr-pQNbdh2aWZ3gAJAys80EpUk05RyEV0jQOujIyFrUoLg-h5VZh_l4JYczrBTj6u_octvqT0XA-HIzvj2Hb7UrFAzmBZrFY4am15oU6KzfxE3Afn_o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+3rd+World+Forum+on+Internet+of+Things+%28WF-IoT%29&rft.atitle=Compressed+sensing+for+different+sensors%3A+A+real+scenario+for+WSN+and+IoT&rft.au=Amarlingam%2C+M.&rft.au=Mishra%2C+Pradeep+Kumar&rft.au=Durga+Prasad%2C+K.V.V.&rft.au=Rajalakshmi%2C+P.&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=289&rft.epage=294&rft_id=info:doi/10.1109%2FWF-IoT.2016.7845487&rft.externalDocID=7845487