Overhead conductor thermal dynamics identification by using Echo State Networks
Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing widely and massively distributed power line sensor networks (PLSNs) to monitor utility asset status for enhancing line reliability and utili...
Saved in:
Published in | 2009 International Joint Conference on Neural Networks pp. 3436 - 3443 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 142443548X 9781424435487 |
ISSN | 2161-4393 |
DOI | 10.1109/IJCNN.2009.5179006 |
Cover
Abstract | Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing widely and massively distributed power line sensor networks (PLSNs) to monitor utility asset status for enhancing line reliability and utilization. One of the important applications of such a PLSN is to evaluate the overhead power line dynamic current capacity down to dasiaper spanpsila level of granularity. Due to the inherent non-linearity of overhead conductor thermal behavior, it is usually quite complex to directly calculate the conductor temperature. Therefore the prediction for the conductor dynamic thermal behavior becomes difficult. In this work, an echo state network (ESN) is proposed to identify the overhead conductor thermal dynamics in real-time. The well trained ESN model is used to predict the dynamic thermal behavior, and thus to evaluate the dynamic current capacity of the line under current ambient weather conditions. This paper addresses the design and implementation issues for such an ESN for this specific application. Simulation results reveal that the ESN model is very effective to predict the conductor temperature and to identify the conductor thermal dynamics subject to wide variations in line current and ambient weather conditions. |
---|---|
AbstractList | Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing widely and massively distributed power line sensor networks (PLSNs) to monitor utility asset status for enhancing line reliability and utilization. One of the important applications of such a PLSN is to evaluate the overhead power line dynamic current capacity down to dasiaper spanpsila level of granularity. Due to the inherent non-linearity of overhead conductor thermal behavior, it is usually quite complex to directly calculate the conductor temperature. Therefore the prediction for the conductor dynamic thermal behavior becomes difficult. In this work, an echo state network (ESN) is proposed to identify the overhead conductor thermal dynamics in real-time. The well trained ESN model is used to predict the dynamic thermal behavior, and thus to evaluate the dynamic current capacity of the line under current ambient weather conditions. This paper addresses the design and implementation issues for such an ESN for this specific application. Simulation results reveal that the ESN model is very effective to predict the conductor temperature and to identify the conductor thermal dynamics subject to wide variations in line current and ambient weather conditions. |
Author | Habetler, T.G. Divan, D. Yi Yang Harley, R.G. |
Author_xml | – sequence: 1 surname: Yi Yang fullname: Yi Yang organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 2 givenname: R.G. surname: Harley fullname: Harley, R.G. organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 3 givenname: D. surname: Divan fullname: Divan, D. organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 4 givenname: T.G. surname: Habetler fullname: Habetler, T.G. organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA |
BookMark | eNo9kLtOwzAYRo0oEk3hBWDxCyT4ltQeUVSgqEoGOrBVvvymhsZBiQvK24NExfIdneUMX4ZmsY-A0A0lBaVE3a2f66YpGCGqKOlSEVKdoYwKJgQvS16d_4uQrzM0Z7SiueCKX6JsHN8JYVwpPkdt-wXDHrTDto_uaFM_4LSHodMH7Kaou2BHHBzEFHywOoU-YjPh4xjiG17ZfY9fkk6AG0jf_fAxXqELrw8jXJ-4QNuH1bZ-yjft47q-3-RBkZQbaayUFSGi4hKU4cQ7Y4WQxghnldTesKVhv6Mok4wZq8FT6xRdeqe94At0-5cNALD7HEKnh2l3OoL_AI0cU90 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IJCNN.2009.5179006 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424435536 9781424435531 |
EndPage | 3443 |
ExternalDocumentID | 5179006 |
Genre | orig-research |
GroupedDBID | 29I 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i90t-b8bc886004638e9b30fdbc448bb4dc98afb27b2b27912822bcaef1cd917fdaf43 |
IEDL.DBID | RIE |
ISBN | 142443548X 9781424435487 |
ISSN | 2161-4393 |
IngestDate | Wed Aug 27 02:13:56 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-b8bc886004638e9b30fdbc448bb4dc98afb27b2b27912822bcaef1cd917fdaf43 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5179006 |
PublicationCentury | 2000 |
PublicationDate | 2009-June |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Joint Conference on Neural Networks |
PublicationTitleAbbrev | IJCNN |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023993 ssj0000443540 |
Score | 1.484882 |
Snippet | Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3436 |
SubjectTerms | Computer networks Conductors Costs Distributed computing Dynamic thermal rating dynamical system identification echo state network Monitoring overhead conductors power grid monitoring Predictive models sensor networks Telecommunication network reliability Temperature Thermal conductivity Weather forecasting |
Title | Overhead conductor thermal dynamics identification by using Echo State Networks |
URI | https://ieeexplore.ieee.org/document/5179006 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYHxnDx5daOkKu2cCQRKKB0y4kZ19GKKCgXLQX-_s9mE0Hrw0bdOk7Xa6832zM98QcmukQ2oc95hBPsG4jBxTwgjmhAcjwHUStDunaW_8xCeL-0WN3FW1MNbakHxm2343rOWbjd77UFknyEl5fe0DNLO8VquKp0Sc-xBGRba84_WN5RDRMHS6SVnUhReJRan1VBz3y2qaSHYeJoM0zXUsi9v96LsS3M6oQablA-fZJi_tfQZt_flLy_G_b3REWt8FfvSxcl3HpGbXJ6RRdnigxQ_fJLMZWjpO14YibfbKsJst9YjxTb1Sk_ey39GVKTKOwkem8EF9Mv0zHeLMSgOYpWmebL5rkfloOB-MWdGCga1klDEQoIXoeRKdCCshiZwBjYwOgBsthXLQ7UMXNzL2-aiglXWxNsgBnVGOJ6ekvt6s7RmhiPsUsuFYgufBUQyIIyCObaSVSxTn56Tph2f5notsLIuRufj79CU5zJd1fDjkitSz7d5eIzrI4CaYxRfVq7K2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSECsa3PXi0sMsWaM8EggiLB0y4kU4fhqhgeBz01zvdl9F48LLpbjbZ3W7b-b7pzDeE3BrpkBqHbWaQTzAuA8eUMII54cEIcB0l2p3juD144sNZa1Yid0UujLU2CT6zdd9M9vLNSu-8q6yRyEl5fe09tPu8lWZrFR6VgHPvxCjolje9vrQcYhqGZjfK07rwJjHL1Z6y806eTxPIxv2wG8epkmX2wB-VVxLD06-Qcf7KabzJS323hbr-_KXm-N9vOiS17xQ_-lgYryNSsstjUslrPNBsylfJZIJjHRdsQ5E4e23Y1Zp6zPimXqlJq9lv6MJkMUfJb6bwQX04_TPt4dpKEzhL4zTcfFMj035v2h2wrAgDW8hgy0CAFqLtaXQkrIQocAY0cjoAbrQUykGzA008yNBHpIJW1oXaIAt0RjkenZDycrW0p4Qi8lPIh0MJngkHISCSgDC0gVYuUpyfkarvnvl7KrMxz3rm_O_LN2R_MB2P5qP7-OGCHKSbPN45cknK2_XOXiFW2MJ1MkS-AGYTtgM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Joint+Conference+on+Neural+Networks&rft.atitle=Overhead+conductor+thermal+dynamics+identification+by+using+Echo+State+Networks&rft.au=Yi+Yang&rft.au=Harley%2C+R.G.&rft.au=Divan%2C+D.&rft.au=Habetler%2C+T.G.&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424435487&rft.issn=2161-4393&rft.spage=3436&rft.epage=3443&rft_id=info:doi/10.1109%2FIJCNN.2009.5179006&rft.externalDocID=5179006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-4393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-4393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-4393&client=summon |