Overhead conductor thermal dynamics identification by using Echo State Networks

Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing widely and massively distributed power line sensor networks (PLSNs) to monitor utility asset status for enhancing line reliability and utili...

Full description

Saved in:
Bibliographic Details
Published in2009 International Joint Conference on Neural Networks pp. 3436 - 3443
Main Authors Yi Yang, Harley, R.G., Divan, D., Habetler, T.G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text
ISBN142443548X
9781424435487
ISSN2161-4393
DOI10.1109/IJCNN.2009.5179006

Cover

Abstract Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing widely and massively distributed power line sensor networks (PLSNs) to monitor utility asset status for enhancing line reliability and utilization. One of the important applications of such a PLSN is to evaluate the overhead power line dynamic current capacity down to dasiaper spanpsila level of granularity. Due to the inherent non-linearity of overhead conductor thermal behavior, it is usually quite complex to directly calculate the conductor temperature. Therefore the prediction for the conductor dynamic thermal behavior becomes difficult. In this work, an echo state network (ESN) is proposed to identify the overhead conductor thermal dynamics in real-time. The well trained ESN model is used to predict the dynamic thermal behavior, and thus to evaluate the dynamic current capacity of the line under current ambient weather conditions. This paper addresses the design and implementation issues for such an ESN for this specific application. Simulation results reveal that the ESN model is very effective to predict the conductor temperature and to identify the conductor thermal dynamics subject to wide variations in line current and ambient weather conditions.
AbstractList Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing widely and massively distributed power line sensor networks (PLSNs) to monitor utility asset status for enhancing line reliability and utilization. One of the important applications of such a PLSN is to evaluate the overhead power line dynamic current capacity down to dasiaper spanpsila level of granularity. Due to the inherent non-linearity of overhead conductor thermal behavior, it is usually quite complex to directly calculate the conductor temperature. Therefore the prediction for the conductor dynamic thermal behavior becomes difficult. In this work, an echo state network (ESN) is proposed to identify the overhead conductor thermal dynamics in real-time. The well trained ESN model is used to predict the dynamic thermal behavior, and thus to evaluate the dynamic current capacity of the line under current ambient weather conditions. This paper addresses the design and implementation issues for such an ESN for this specific application. Simulation results reveal that the ESN model is very effective to predict the conductor temperature and to identify the conductor thermal dynamics subject to wide variations in line current and ambient weather conditions.
Author Habetler, T.G.
Divan, D.
Yi Yang
Harley, R.G.
Author_xml – sequence: 1
  surname: Yi Yang
  fullname: Yi Yang
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  givenname: R.G.
  surname: Harley
  fullname: Harley, R.G.
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 3
  givenname: D.
  surname: Divan
  fullname: Divan, D.
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 4
  givenname: T.G.
  surname: Habetler
  fullname: Habetler, T.G.
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
BookMark eNo9kLtOwzAYRo0oEk3hBWDxCyT4ltQeUVSgqEoGOrBVvvymhsZBiQvK24NExfIdneUMX4ZmsY-A0A0lBaVE3a2f66YpGCGqKOlSEVKdoYwKJgQvS16d_4uQrzM0Z7SiueCKX6JsHN8JYVwpPkdt-wXDHrTDto_uaFM_4LSHodMH7Kaou2BHHBzEFHywOoU-YjPh4xjiG17ZfY9fkk6AG0jf_fAxXqELrw8jXJ-4QNuH1bZ-yjft47q-3-RBkZQbaayUFSGi4hKU4cQ7Y4WQxghnldTesKVhv6Mok4wZq8FT6xRdeqe94At0-5cNALD7HEKnh2l3OoL_AI0cU90
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IJCNN.2009.5179006
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424435536
9781424435531
EndPage 3443
ExternalDocumentID 5179006
Genre orig-research
GroupedDBID 29I
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i90t-b8bc886004638e9b30fdbc448bb4dc98afb27b2b27912822bcaef1cd917fdaf43
IEDL.DBID RIE
ISBN 142443548X
9781424435487
ISSN 2161-4393
IngestDate Wed Aug 27 02:13:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b8bc886004638e9b30fdbc448bb4dc98afb27b2b27912822bcaef1cd917fdaf43
PageCount 8
ParticipantIDs ieee_primary_5179006
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 International Joint Conference on Neural Networks
PublicationTitleAbbrev IJCNN
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023993
ssj0000443540
Score 1.484882
Snippet Dramatic reductions in sensor, computing and communications costs, coupled with significant performance enhancements has increased the possibility of realizing...
SourceID ieee
SourceType Publisher
StartPage 3436
SubjectTerms Computer networks
Conductors
Costs
Distributed computing
Dynamic thermal rating
dynamical system identification
echo state network
Monitoring
overhead conductors
power grid monitoring
Predictive models
sensor networks
Telecommunication network reliability
Temperature
Thermal conductivity
Weather forecasting
Title Overhead conductor thermal dynamics identification by using Echo State Networks
URI https://ieeexplore.ieee.org/document/5179006
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYHxnDx5daOkKu2cCQRKKB0y4kZ19GKKCgXLQX-_s9mE0Hrw0bdOk7Xa6832zM98QcmukQ2oc95hBPsG4jBxTwgjmhAcjwHUStDunaW_8xCeL-0WN3FW1MNbakHxm2343rOWbjd77UFknyEl5fe0DNLO8VquKp0Sc-xBGRba84_WN5RDRMHS6SVnUhReJRan1VBz3y2qaSHYeJoM0zXUsi9v96LsS3M6oQablA-fZJi_tfQZt_flLy_G_b3REWt8FfvSxcl3HpGbXJ6RRdnigxQ_fJLMZWjpO14YibfbKsJst9YjxTb1Sk_ey39GVKTKOwkem8EF9Mv0zHeLMSgOYpWmebL5rkfloOB-MWdGCga1klDEQoIXoeRKdCCshiZwBjYwOgBsthXLQ7UMXNzL2-aiglXWxNsgBnVGOJ6ekvt6s7RmhiPsUsuFYgufBUQyIIyCObaSVSxTn56Tph2f5notsLIuRufj79CU5zJd1fDjkitSz7d5eIzrI4CaYxRfVq7K2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4IHvSECsa3PXi0sMsWaM8EggiLB0y4kU4fhqhgeBz01zvdl9F48LLpbjbZ3W7b-b7pzDeE3BrpkBqHbWaQTzAuA8eUMII54cEIcB0l2p3juD144sNZa1Yid0UujLU2CT6zdd9M9vLNSu-8q6yRyEl5fe09tPu8lWZrFR6VgHPvxCjolje9vrQcYhqGZjfK07rwJjHL1Z6y806eTxPIxv2wG8epkmX2wB-VVxLD06-Qcf7KabzJS323hbr-_KXm-N9vOiS17xQ_-lgYryNSsstjUslrPNBsylfJZIJjHRdsQ5E4e23Y1Zp6zPimXqlJq9lv6MJkMUfJb6bwQX04_TPt4dpKEzhL4zTcfFMj035v2h2wrAgDW8hgy0CAFqLtaXQkrIQocAY0cjoAbrQUykGzA008yNBHpIJW1oXaIAt0RjkenZDycrW0p4Qi8lPIh0MJngkHISCSgDC0gVYuUpyfkarvnvl7KrMxz3rm_O_LN2R_MB2P5qP7-OGCHKSbPN45cknK2_XOXiFW2MJ1MkS-AGYTtgM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Joint+Conference+on+Neural+Networks&rft.atitle=Overhead+conductor+thermal+dynamics+identification+by+using+Echo+State+Networks&rft.au=Yi+Yang&rft.au=Harley%2C+R.G.&rft.au=Divan%2C+D.&rft.au=Habetler%2C+T.G.&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424435487&rft.issn=2161-4393&rft.spage=3436&rft.epage=3443&rft_id=info:doi/10.1109%2FIJCNN.2009.5179006&rft.externalDocID=5179006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-4393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-4393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-4393&client=summon