Topic modelling on Instagram hashtags: An alternative way to Automatic Image Annotation?
Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and r...
Saved in:
Published in | 2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) pp. 61 - 67 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/SMAP.2018.8501887 |
Cover
Loading…
Abstract | Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods. |
---|---|
AbstractList | Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods. |
Author | Argyrou, Argyris Tsapatsoulis, Nicolas Giannoulakis, Stamatios |
Author_xml | – sequence: 1 givenname: Argyris surname: Argyrou fullname: Argyrou, Argyris organization: Dept. of Communication and Internet Studies, Cyprus University of Technology, Limassol, CY-3036, Cyprus – sequence: 2 givenname: Stamatios surname: Giannoulakis fullname: Giannoulakis, Stamatios organization: Dept. of Communication and Internet Studies, Cyprus University of Technology, Limassol, CY-3036, Cyprus – sequence: 3 givenname: Nicolas surname: Tsapatsoulis fullname: Tsapatsoulis, Nicolas organization: Dept. of Communication and Internet Studies, Cyprus University of Technology, Limassol, CY-3036, Cyprus |
BookMark | eNotT1tLwzAYjaAPbu4HiC_5A625NE3qi5ThpTBxsD34NpL0Sxdok9FGZf_egns5Nw4HzgJdhxgAoXtKckpJ9bj7qLc5I1TlSsyo5BVaUMFVqRgT8hZ97ePJWzzEFvrehw7HgJswJd2NesBHPR1nOT3hOmDdJxiDTv4H8K8-4xRx_Z3iMCcWN4PuYG6FmGYfw_MdunG6n2B14SXavb7s1-_Z5vOtWdebzFckZUaUJXFcyMK51tKC85YJY4QudQtgjZVSWeNYq5QBUTBbcU44sYUAJ6XjS_Twv-oB4HAa_aDH8-Fylf8BEipPCQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SMAP.2018.8501887 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538682257 9781538682258 |
EndPage | 67 |
ExternalDocumentID | 8501887 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-b5660f3574ffdc1433d25bb5a6adeecbc778cbf2d88be542c933030c45ef77f3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:58 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-b5660f3574ffdc1433d25bb5a6adeecbc778cbf2d88be542c933030c45ef77f3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8501887 |
PublicationCentury | 2000 |
PublicationDate | 2018-Sept. |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) |
PublicationTitleAbbrev | SMAP |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8364946 |
Snippet | Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 61 |
SubjectTerms | Analytical models automatic image annotation Data models Image annotation Instagram hashtags learning by example Tagging Topic modelling Training Visualization |
Title | Topic modelling on Instagram hashtags: An alternative way to Automatic Image Annotation? |
URI | https://ieeexplore.ieee.org/document/8501887 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7d7XY32WS9SBFLFSqFVuit5DGhRdwtdhfRX2-SXRXFg7chDCRkhsyQ-eYbhC60ziLDsjQwkpCACOvGPAUIFOOpAqaJAo-2eEjHj-R-QRctdPnVCwMAHnwGoRN9LV8XqnJfZX3u2Oc4a6O2dbO6V6spVA6irD-bDKcOq8XDRu_HwBQfL0a7aPK5Uw0TeQqrUobq_RcJ43-Psod63515ePoVc_ZRC_IuWsyLzVphP9TGdZfjIscOBCAc8gqvxHZlxe0VHubYF8dzT_aNX8UbLgs8rMrC87biu2f7uFitvKjr89c9NBvdzm_GQTMxIVhnURlIm5tFJqGMGKOVzYQSHVMpqUiFBlBSMcaVNLHmXAIlsXK_GUmkCAXDmEkOUCcvcjhEOGFZDHFCEykEGRDJUy6N0Bl3_IRxxo5Q193JclNTYiyb6zj-e_kE7Ti71NCsU9QpXyo4s7G8lOfeiB94C6K_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HvSk0opvc_Dobre7ySbrRYpYWm1LoRV6K3nSIu4Wu4vorzfJrhXFg7chBBJmQmaY-eYbAK6kTAJNktjTHCEPMfOMaayUJwiNhSISCeXQFqO494QeZnhWA9ebXhillAOfKd-KrpYvM1HYVFmLWvY5SrbAtvH7CJfdWlWpsh0krcmwM7ZoLepXO3-MTHEeo7sHhl9nlUCRZ7_IuS8-ftEw_vcy-6D53ZsHxxuvcwBqKm2A2TRbLQV0Y21sfznMUmhhAMxir-CCrRdGXN_ATgpdeTx1dN_wjb3DPIOdIs8ccyvsv5jvxexKs7JCf9sEk-799K7nVTMTvGUS5B430VmgI0yQ1lKYWCiSIeYcs5hJpQQXhFDBdSgp5QqjUNh8RhQIhJUmREeHoJ5mqToCMCJJqMIIR5wx1EacxpRrJhNqGQrDhByDhtXJfFWSYswrdZz8vXwJdnrT4WA-6I8eT8GutVEJ1DoD9fy1UOfGs-f8whn0EysOpgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+13th+International+Workshop+on+Semantic+and+Social+Media+Adaptation+and+Personalization+%28SMAP%29&rft.atitle=Topic+modelling+on+Instagram+hashtags%3A+An+alternative+way+to+Automatic+Image+Annotation%3F&rft.au=Argyrou%2C+Argyris&rft.au=Giannoulakis%2C+Stamatios&rft.au=Tsapatsoulis%2C+Nicolas&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=61&rft.epage=67&rft_id=info:doi/10.1109%2FSMAP.2018.8501887&rft.externalDocID=8501887 |