Topic modelling on Instagram hashtags: An alternative way to Automatic Image Annotation?

Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and r...

Full description

Saved in:
Bibliographic Details
Published in2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP) pp. 61 - 67
Main Authors Argyrou, Argyris, Giannoulakis, Stamatios, Tsapatsoulis, Nicolas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text
DOI10.1109/SMAP.2018.8501887

Cover

Loading…
Abstract Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods.
AbstractList Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image annotation methods are based on the learning by example paradigm. In those methods building the training examples, that is, pairs of images and related tags, is the first critical step. We have shown in our previous studies that hashtags accompanying images in social media and especially the Instagram provide a reach source for creating training sets for AIA. However, we concluded that only 20% of the Instagram hashtags describe the actual content of the image they accompany, thus, a series of filtering steps need to apply in order to identify the appropriate hashtags. In this paper we apply topic modelling with Latent Dirichlet Allocation (LDA) on Instagram hashtags in order to predict the subject of the related images. Since a topic is composed by a set of related terms, the identification of the visual topic of an Instagram image, through the proposed method, provides a plausible set of tags to be used in the context of training AIA methods.
Author Argyrou, Argyris
Tsapatsoulis, Nicolas
Giannoulakis, Stamatios
Author_xml – sequence: 1
  givenname: Argyris
  surname: Argyrou
  fullname: Argyrou, Argyris
  organization: Dept. of Communication and Internet Studies, Cyprus University of Technology, Limassol, CY-3036, Cyprus
– sequence: 2
  givenname: Stamatios
  surname: Giannoulakis
  fullname: Giannoulakis, Stamatios
  organization: Dept. of Communication and Internet Studies, Cyprus University of Technology, Limassol, CY-3036, Cyprus
– sequence: 3
  givenname: Nicolas
  surname: Tsapatsoulis
  fullname: Tsapatsoulis, Nicolas
  organization: Dept. of Communication and Internet Studies, Cyprus University of Technology, Limassol, CY-3036, Cyprus
BookMark eNotT1tLwzAYjaAPbu4HiC_5A625NE3qi5ThpTBxsD34NpL0Sxdok9FGZf_egns5Nw4HzgJdhxgAoXtKckpJ9bj7qLc5I1TlSsyo5BVaUMFVqRgT8hZ97ePJWzzEFvrehw7HgJswJd2NesBHPR1nOT3hOmDdJxiDTv4H8K8-4xRx_Z3iMCcWN4PuYG6FmGYfw_MdunG6n2B14SXavb7s1-_Z5vOtWdebzFckZUaUJXFcyMK51tKC85YJY4QudQtgjZVSWeNYq5QBUTBbcU44sYUAJ6XjS_Twv-oB4HAa_aDH8-Fylf8BEipPCQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SMAP.2018.8501887
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538682257
9781538682258
EndPage 67
ExternalDocumentID 8501887
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b5660f3574ffdc1433d25bb5a6adeecbc778cbf2d88be542c933030c45ef77f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:58 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b5660f3574ffdc1433d25bb5a6adeecbc778cbf2d88be542c933030c45ef77f3
PageCount 7
ParticipantIDs ieee_primary_8501887
PublicationCentury 2000
PublicationDate 2018-Sept.
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sept.
PublicationDecade 2010
PublicationTitle 2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)
PublicationTitleAbbrev SMAP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8364946
Snippet Automatic Image Annotation (AIA) is the process of assigning tags to digital images without the intervention of humans. Most of the modern automatic image...
SourceID ieee
SourceType Publisher
StartPage 61
SubjectTerms Analytical models
automatic image annotation
Data models
Image annotation
Instagram hashtags
learning by example
Tagging
Topic modelling
Training
Twitter
Visualization
Title Topic modelling on Instagram hashtags: An alternative way to Automatic Image Annotation?
URI https://ieeexplore.ieee.org/document/8501887
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7d7XY32WS9SBFLFSqFVuit5DGhRdwtdhfRX2-SXRXFg7chDCRkhsyQ-eYbhC60ziLDsjQwkpCACOvGPAUIFOOpAqaJAo-2eEjHj-R-QRctdPnVCwMAHnwGoRN9LV8XqnJfZX3u2Oc4a6O2dbO6V6spVA6irD-bDKcOq8XDRu_HwBQfL0a7aPK5Uw0TeQqrUobq_RcJ43-Psod63515ePoVc_ZRC_IuWsyLzVphP9TGdZfjIscOBCAc8gqvxHZlxe0VHubYF8dzT_aNX8UbLgs8rMrC87biu2f7uFitvKjr89c9NBvdzm_GQTMxIVhnURlIm5tFJqGMGKOVzYQSHVMpqUiFBlBSMcaVNLHmXAIlsXK_GUmkCAXDmEkOUCcvcjhEOGFZDHFCEykEGRDJUy6N0Bl3_IRxxo5Q193JclNTYiyb6zj-e_kE7Ti71NCsU9QpXyo4s7G8lOfeiB94C6K_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HvSk0opvc_Dobre7ySbrRYpYWm1LoRV6K3nSIu4Wu4vorzfJrhXFg7chBBJmQmaY-eYbAK6kTAJNktjTHCEPMfOMaayUJwiNhSISCeXQFqO494QeZnhWA9ebXhillAOfKd-KrpYvM1HYVFmLWvY5SrbAtvH7CJfdWlWpsh0krcmwM7ZoLepXO3-MTHEeo7sHhl9nlUCRZ7_IuS8-ftEw_vcy-6D53ZsHxxuvcwBqKm2A2TRbLQV0Y21sfznMUmhhAMxir-CCrRdGXN_ATgpdeTx1dN_wjb3DPIOdIs8ccyvsv5jvxexKs7JCf9sEk-799K7nVTMTvGUS5B430VmgI0yQ1lKYWCiSIeYcs5hJpQQXhFDBdSgp5QqjUNh8RhQIhJUmREeHoJ5mqToCMCJJqMIIR5wx1EacxpRrJhNqGQrDhByDhtXJfFWSYswrdZz8vXwJdnrT4WA-6I8eT8GutVEJ1DoD9fy1UOfGs-f8whn0EysOpgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+13th+International+Workshop+on+Semantic+and+Social+Media+Adaptation+and+Personalization+%28SMAP%29&rft.atitle=Topic+modelling+on+Instagram+hashtags%3A+An+alternative+way+to+Automatic+Image+Annotation%3F&rft.au=Argyrou%2C+Argyris&rft.au=Giannoulakis%2C+Stamatios&rft.au=Tsapatsoulis%2C+Nicolas&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=61&rft.epage=67&rft_id=info:doi/10.1109%2FSMAP.2018.8501887&rft.externalDocID=8501887