Fuzzy clustering using hybrid fuzzy c-means and fuzzy particle swarm optimization
Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However FCM is sensitive to initi...
Saved in:
Published in | 2009 World Congress on Nature and Biologically Inspired Computing pp. 1690 - 1694 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results. |
---|---|
AbstractList | Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results. |
Author | Izakian, H. Snasel, V. Abraham, A. |
Author_xml | – sequence: 1 givenname: H. surname: Izakian fullname: Izakian, H. organization: Machine Intell. Res. Labs. (MIR Labs.), Auburn, WA, USA – sequence: 2 givenname: A. surname: Abraham fullname: Abraham, A. organization: Machine Intell. Res. Labs. (MIR Labs.), Auburn, WA, USA – sequence: 3 givenname: V. surname: Snasel fullname: Snasel, V. organization: Fac. of Electr. Eng. & Comput. Sci., VSB-Tech. Univ. of Ostrava, Ostrava, Czech Republic |
BookMark | eNo1kNtKw0AYhBe0oKl9Ab3JCyTu6d92L2uwWiiK0Puyu_1XV3IimyDJ02tpnYsZmA_mYhJyXTc1EnLPaM4Y1Y9v66dtkXNKdQ5CC8VWVyRhkksJFATMSHJimi6ZgBuyiPGb_kkCFxRuycdmmKYxdeUQe-xC_ZkO8eRfo-3CMfVnmlVo6pia-r9pTdcHV2Iaf0xXpU3bhypMpg9NfUdm3pQRF5eck_3meV-8Zrv3l22x3mVB0z6zAJ6iX2kE45RdWq601aCY9FxoCeiZcoaj1pyiZcIYAKu4V0fnqOIo5uThPBsQ8dB2oTLdeLg8IH4BwzBTLQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NABIC.2009.5393618 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 1694 |
ExternalDocumentID | 5393618 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IK 6IL 6IM 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i90t-b55f0ef89e5ac6b7b269b95614f23945ef16ca2e9920eb13aa55b62f6dcc062e3 |
IEDL.DBID | RIE |
ISBN | 1424450535 9781424450534 |
IngestDate | Wed Aug 27 02:53:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2009907135 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-b55f0ef89e5ac6b7b269b95614f23945ef16ca2e9920eb13aa55b62f6dcc062e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5393618 |
PublicationCentury | 2000 |
PublicationDate | 2009-Dec. |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-Dec. |
PublicationDecade | 2000 |
PublicationTitle | 2009 World Congress on Nature and Biologically Inspired Computing |
PublicationTitleAbbrev | NABIC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452305 |
Score | 1.5893058 |
Snippet | Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1690 |
SubjectTerms | Ant colony optimization Clustering algorithms Clustering methods fuzzy clustering Fuzzy sets Iterative algorithms Machine intelligence Machine learning algorithms Particle swarm optimization Partitioning algorithms Stochastic processes |
Title | Fuzzy clustering using hybrid fuzzy c-means and fuzzy particle swarm optimization |
URI | https://ieeexplore.ieee.org/document/5393618 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Akyc1YPxODx4tlK3t6FGJRE0gmmDCjbTlrRplENxi4Nfbbh1G48Hb9nZdmn49_Xif50XoIuEMEiGZG0hSEC9ITnRCGbHSuO-NA9xCxHU4ErdP7H7CJzV0ueXCAEDhfAZt_1jc5c8WJvdHZR0ey1h0e3VUdxu3kqu1PU_x0uCu71bcLe51SypJp_DOKtIMlZ3R1fVdv5SrDH_9EV6lQJfBLhpW5SqdSt7aeabbZvNLsvG_Bd9DrW8eH37YItQ-qkHaRI-DfLNZY_Oee40EZ8fe9_0Zv6w9eQvbMpXMwYEYVmllWYY-hj8-1WqOF26qmQcOZwuNBzfj_i0JgRXIq6QZ0ZxbCrYngbvW0ImOhNSe4MqsD5TOwXaFURFIGVE3lcdKca5FZMXMGCoiiA9QI12kcIiwEQAmTii4ZQOjwLVyWZly6ygNsdHmCDV9bUyXpXTGNFTE8d_mE7QThfAMtHuKGtkqhzOH-Zk-Lxr7C4C-qXI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHB93WdvSoRIIKRBNMuJG1vKlRBsEtBv562_3AaDx46163pmm7fi_t-74HcBFwhoGQzPxIUjhWkNxRAWVOJLV5XxvAzURc-wPRfWJ3Iz6qwOWaC4OIWfAZNmwxu8ufzHRqj8qa3Je-cFsbsGlwn7s5W2t9omLFwc3qLdlb3CqXlKJOxTMraTNUNgdX17ftXLCyaPdHgpUMXzo70C97loeVvDXSRDX06pdo43-7vgv1byYfeVhj1B5UMK7BYyddrZZEv6dWJcHYiY1-fyYvS0vfIlFe60zRwBgJ49IyL1YZ-fgMF1MyM5vNtGBx1mHYuRm2u06RWsF5lTRxFOcRxaglkZv5UIHyhFSW4soimyqdY-QKHXoopUfNZu6HIedKeJGYaE2Fh_4-VONZjAdAtEDUfkDROA6MIleh-ZSFxpNS6GulD6FmR2M8z8UzxsVAHP1tPoet7rDfG_duB_fHsO0VyRqoewLVZJHiqfEAEnWWTfwXiZqsuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+World+Congress+on+Nature+and+Biologically+Inspired+Computing&rft.atitle=Fuzzy+clustering+using+hybrid+fuzzy+c-means+and+fuzzy+particle+swarm+optimization&rft.au=Izakian%2C+H.&rft.au=Abraham%2C+A.&rft.au=Snasel%2C+V.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424450534&rft.spage=1690&rft.epage=1694&rft_id=info:doi/10.1109%2FNABIC.2009.5393618&rft.externalDocID=5393618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450534/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450534/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450534/sc.gif&client=summon&freeimage=true |