Fuzzy clustering using hybrid fuzzy c-means and fuzzy particle swarm optimization

Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However FCM is sensitive to initi...

Full description

Saved in:
Bibliographic Details
Published in2009 World Congress on Nature and Biologically Inspired Computing pp. 1690 - 1694
Main Authors Izakian, H., Abraham, A., Snasel, V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.
AbstractList Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of the most popular fuzzy clustering techniques because it is efficient, straightforward, and easy to implement. However FCM is sensitive to initialization and is easily trapped in local optima. Particle swarm optimization (PSO) is a stochastic global optimization tool which is used in many optimization problems. In this paper a hybrid fuzzy clustering method based on FCM and fuzzy PSO (FPSO) is proposed which make use of the merits of both algorithms. Experimental results show that our proposed method is efficient and can reveal encouraging results.
Author Izakian, H.
Snasel, V.
Abraham, A.
Author_xml – sequence: 1
  givenname: H.
  surname: Izakian
  fullname: Izakian, H.
  organization: Machine Intell. Res. Labs. (MIR Labs.), Auburn, WA, USA
– sequence: 2
  givenname: A.
  surname: Abraham
  fullname: Abraham, A.
  organization: Machine Intell. Res. Labs. (MIR Labs.), Auburn, WA, USA
– sequence: 3
  givenname: V.
  surname: Snasel
  fullname: Snasel, V.
  organization: Fac. of Electr. Eng. & Comput. Sci., VSB-Tech. Univ. of Ostrava, Ostrava, Czech Republic
BookMark eNo1kNtKw0AYhBe0oKl9Ab3JCyTu6d92L2uwWiiK0Puyu_1XV3IimyDJ02tpnYsZmA_mYhJyXTc1EnLPaM4Y1Y9v66dtkXNKdQ5CC8VWVyRhkksJFATMSHJimi6ZgBuyiPGb_kkCFxRuycdmmKYxdeUQe-xC_ZkO8eRfo-3CMfVnmlVo6pia-r9pTdcHV2Iaf0xXpU3bhypMpg9NfUdm3pQRF5eck_3meV-8Zrv3l22x3mVB0z6zAJ6iX2kE45RdWq601aCY9FxoCeiZcoaj1pyiZcIYAKu4V0fnqOIo5uThPBsQ8dB2oTLdeLg8IH4BwzBTLQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NABIC.2009.5393618
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 1694
ExternalDocumentID 5393618
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IK
6IL
6IM
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i90t-b55f0ef89e5ac6b7b269b95614f23945ef16ca2e9920eb13aa55b62f6dcc062e3
IEDL.DBID RIE
ISBN 1424450535
9781424450534
IngestDate Wed Aug 27 02:53:35 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009907135
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b55f0ef89e5ac6b7b269b95614f23945ef16ca2e9920eb13aa55b62f6dcc062e3
PageCount 5
ParticipantIDs ieee_primary_5393618
PublicationCentury 2000
PublicationDate 2009-Dec.
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-Dec.
PublicationDecade 2000
PublicationTitle 2009 World Congress on Nature and Biologically Inspired Computing
PublicationTitleAbbrev NABIC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452305
Score 1.5893058
Snippet Fuzzy clustering is an important problem which is the subject of active research in several real world applications. Fuzzy c-means (FCM) algorithm is one of...
SourceID ieee
SourceType Publisher
StartPage 1690
SubjectTerms Ant colony optimization
Clustering algorithms
Clustering methods
fuzzy clustering
Fuzzy sets
Iterative algorithms
Machine intelligence
Machine learning algorithms
Particle swarm optimization
Partitioning algorithms
Stochastic processes
Title Fuzzy clustering using hybrid fuzzy c-means and fuzzy particle swarm optimization
URI https://ieeexplore.ieee.org/document/5393618
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Akyc1YPxODx4tlK3t6FGJRE0gmmDCjbTlrRplENxi4Nfbbh1G48Hb9nZdmn49_Xif50XoIuEMEiGZG0hSEC9ITnRCGbHSuO-NA9xCxHU4ErdP7H7CJzV0ueXCAEDhfAZt_1jc5c8WJvdHZR0ey1h0e3VUdxu3kqu1PU_x0uCu71bcLe51SypJp_DOKtIMlZ3R1fVdv5SrDH_9EV6lQJfBLhpW5SqdSt7aeabbZvNLsvG_Bd9DrW8eH37YItQ-qkHaRI-DfLNZY_Oee40EZ8fe9_0Zv6w9eQvbMpXMwYEYVmllWYY-hj8-1WqOF26qmQcOZwuNBzfj_i0JgRXIq6QZ0ZxbCrYngbvW0ImOhNSe4MqsD5TOwXaFURFIGVE3lcdKca5FZMXMGCoiiA9QI12kcIiwEQAmTii4ZQOjwLVyWZly6ygNsdHmCDV9bUyXpXTGNFTE8d_mE7QThfAMtHuKGtkqhzOH-Zk-Lxr7C4C-qXI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHB93WdvSoRIIKRBNMuJG1vKlRBsEtBv562_3AaDx46163pmm7fi_t-74HcBFwhoGQzPxIUjhWkNxRAWVOJLV5XxvAzURc-wPRfWJ3Iz6qwOWaC4OIWfAZNmwxu8ufzHRqj8qa3Je-cFsbsGlwn7s5W2t9omLFwc3qLdlb3CqXlKJOxTMraTNUNgdX17ftXLCyaPdHgpUMXzo70C97loeVvDXSRDX06pdo43-7vgv1byYfeVhj1B5UMK7BYyddrZZEv6dWJcHYiY1-fyYvS0vfIlFe60zRwBgJ49IyL1YZ-fgMF1MyM5vNtGBx1mHYuRm2u06RWsF5lTRxFOcRxaglkZv5UIHyhFSW4soimyqdY-QKHXoopUfNZu6HIedKeJGYaE2Fh_4-VONZjAdAtEDUfkDROA6MIleh-ZSFxpNS6GulD6FmR2M8z8UzxsVAHP1tPoet7rDfG_duB_fHsO0VyRqoewLVZJHiqfEAEnWWTfwXiZqsuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+World+Congress+on+Nature+and+Biologically+Inspired+Computing&rft.atitle=Fuzzy+clustering+using+hybrid+fuzzy+c-means+and+fuzzy+particle+swarm+optimization&rft.au=Izakian%2C+H.&rft.au=Abraham%2C+A.&rft.au=Snasel%2C+V.&rft.date=2009-12-01&rft.pub=IEEE&rft.isbn=9781424450534&rft.spage=1690&rft.epage=1694&rft_id=info:doi/10.1109%2FNABIC.2009.5393618&rft.externalDocID=5393618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450534/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450534/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424450534/sc.gif&client=summon&freeimage=true