Social network privacy measurement and simulation

Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and effective way to quantify, measure and evaluate privacy, it is hard for social networking sites and users to make and adjust privacy settings t...

Full description

Saved in:
Bibliographic Details
Published in2014 International Conference on Computing, Networking and Communications (ICNC) pp. 802 - 806
Main Authors Yong Wang, Nepali, Raj Kumar, Nikolai, Jason
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2014
Subjects
Online AccessGet full text
DOI10.1109/ICCNC.2014.6785440

Cover

Abstract Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and effective way to quantify, measure and evaluate privacy, it is hard for social networking sites and users to make and adjust privacy settings to protect privacy. In this paper, we introduce a practical and effective approach for privacy measurement in social networks. We use Privacy Index (PIDX) to measure a user's privacy exposure in a social network. PIDX is a numerical value between 0 and 100. High PIDX value indicates high privacy risk in social networks. A privacy index function PIDX(i, j) is proposed to evaluate actor A j 's privacy exposure to actor A j . Using this model, it is convenient to evaluate any users' privacy exposure to their friends, friends of friends, and public. We further develop a social network privacy simulation tool, OSNPIDX, to verify the effectiveness of our approach.
AbstractList Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and effective way to quantify, measure and evaluate privacy, it is hard for social networking sites and users to make and adjust privacy settings to protect privacy. In this paper, we introduce a practical and effective approach for privacy measurement in social networks. We use Privacy Index (PIDX) to measure a user's privacy exposure in a social network. PIDX is a numerical value between 0 and 100. High PIDX value indicates high privacy risk in social networks. A privacy index function PIDX(i, j) is proposed to evaluate actor A j 's privacy exposure to actor A j . Using this model, it is convenient to evaluate any users' privacy exposure to their friends, friends of friends, and public. We further develop a social network privacy simulation tool, OSNPIDX, to verify the effectiveness of our approach.
Author Yong Wang
Nepali, Raj Kumar
Nikolai, Jason
Author_xml – sequence: 1
  surname: Yong Wang
  fullname: Yong Wang
  email: yong.wang@dsu.edu
  organization: Coll. of Bus. & Inf. Syst., Dakota State Univ., Madison, SD, USA
– sequence: 2
  givenname: Raj Kumar
  surname: Nepali
  fullname: Nepali, Raj Kumar
  email: rknepali@pluto.dsu.edu
  organization: Coll. of Bus. & Inf. Syst., Dakota State Univ., Madison, SD, USA
– sequence: 3
  givenname: Jason
  surname: Nikolai
  fullname: Nikolai, Jason
  email: janikolai@pluto.dsu.edu
  organization: Coll. of Bus. & Inf. Syst., Dakota State Univ., Madison, SD, USA
BookMark eNotj8tOwzAQRY0ECyj9Adj4BxI8fiT2Elk8KlVlQffV2J5IFomDkhTUv6cSXVyd3dG5d-y6jIUYewBRAwj3tPF-52spQNdNa43W4oqtXWtBt85JZay9ZfA5xow9L7T8jtMX_57yD8YTHwjn40QDlYVjSXzOw7HHJY_lnt102M-0vnDF9q8ve_9ebT_eNv55W2UnliqA1kHKlpJpbIiyQaIQreyCM1rieVJEECpFE4ga6VJABeBQYOwSgFqxx39tJqLDOWvA6XS4_FB_sgZCVA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCNC.2014.6785440
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479923588
1479923583
EndPage 806
ExternalDocumentID 6785440
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b144b227ed568bc26aeebc82fb9542a54220c103dc5bee629dba3119a0acfd113
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:25 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b144b227ed568bc26aeebc82fb9542a54220c103dc5bee629dba3119a0acfd113
PageCount 5
ParticipantIDs ieee_primary_6785440
PublicationCentury 2000
PublicationDate 2014-Feb.
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-Feb.
PublicationDecade 2010
PublicationTitle 2014 International Conference on Computing, Networking and Communications (ICNC)
PublicationTitleAbbrev ICCNC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6270005
Snippet Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and...
SourceID ieee
SourceType Publisher
StartPage 802
SubjectTerms Data privacy
Indexes
Numerical models
Privacy
privacy index
privacy measurement
Sensitivity
simulation
Social network services
social networks
SONET
Title Social network privacy measurement and simulation
URI https://ieeexplore.ieee.org/document/6785440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB4_udjObze6eF0sVWjxU6K1kkgkU6bbUraC_3n21RfHgIRBCIJlJyDCT75th7B6cMGlMxgPlEk9akXhJap2H4DQqA5JcxXceT9ToVT7PolmHPey5MERUg8_Ir7r1X75dmW0VKhuUD2skZemgH5XXrOFq7XgwQTp4yrJJVoG1pN9O_FExpTYYwxM23i3V4ETe_G2Bvvn6lYXxv3s5Zf0DNY-_7I3OGetQ3mOiIdnyvMF08_Vm8aHNJ18eAoBc55a_L5Ztta4-mw4fp9nIa2sheIs0KDws_R4EiMlGKkEDShOhScBhGknQZYPAiCC0JkIiBalFHQqR6kAbZ4UIz1k3X-V0wTigtQpiDAUIiTGiDVRCygYYWROK6JL1Kmnn6ybbxbwV9Orv4Wt2XGm8wTHfsG6x2dJtaaYLvKvP5xu-mZYq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvSk0orf7sGj2W6ySXb3vFhabYuHCr2VTDILRbotdVfQX-9-tUXx4CEQQiCZBPKYyXszhNzzhJkoQEO5SkIqLAtpGNmEAk80KMMFJqXeeTxRg1fxNJOzFnnYaWEQsSKfoVt2q798uzJ5GSrrFQ-rFKJw0A8K3BeyVmttlTBe1BvG8SQu6VrCbab-qJlSQUb_mIy3i9VMkTc3z8A1X7_yMP53NyekuxfnOS872DklLUw7hNUyWyetWd3OerP40ObTWe5DgI5OrfO-WDb1urpk2n-cxgPaVEOgi8jLKBSeD3AeoJUqBMOVRgQT8gQiKbguGvcM83xrJCAqHlnQPmOR9rRJLGP-GWmnqxTPicPBWsUD8BlnAgIA66kQlfVAWuMzeUE6pbXzdZ3vYt4Yevn38B05HEzHo_loOHm-Ikfl6des5mvSzjY53hSgncFtdVffzWKZdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Computing%2C+Networking+and+Communications+%28ICNC%29&rft.atitle=Social+network+privacy+measurement+and+simulation&rft.au=Yong+Wang&rft.au=Nepali%2C+Raj+Kumar&rft.au=Nikolai%2C+Jason&rft.date=2014-02-01&rft.pub=IEEE&rft.spage=802&rft.epage=806&rft_id=info:doi/10.1109%2FICCNC.2014.6785440&rft.externalDocID=6785440