Social network privacy measurement and simulation
Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and effective way to quantify, measure and evaluate privacy, it is hard for social networking sites and users to make and adjust privacy settings t...
Saved in:
Published in | 2014 International Conference on Computing, Networking and Communications (ICNC) pp. 802 - 806 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.02.2014
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCNC.2014.6785440 |
Cover
Abstract | Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and effective way to quantify, measure and evaluate privacy, it is hard for social networking sites and users to make and adjust privacy settings to protect privacy. In this paper, we introduce a practical and effective approach for privacy measurement in social networks. We use Privacy Index (PIDX) to measure a user's privacy exposure in a social network. PIDX is a numerical value between 0 and 100. High PIDX value indicates high privacy risk in social networks. A privacy index function PIDX(i, j) is proposed to evaluate actor A j 's privacy exposure to actor A j . Using this model, it is convenient to evaluate any users' privacy exposure to their friends, friends of friends, and public. We further develop a social network privacy simulation tool, OSNPIDX, to verify the effectiveness of our approach. |
---|---|
AbstractList | Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and effective way to quantify, measure and evaluate privacy, it is hard for social networking sites and users to make and adjust privacy settings to protect privacy. In this paper, we introduce a practical and effective approach for privacy measurement in social networks. We use Privacy Index (PIDX) to measure a user's privacy exposure in a social network. PIDX is a numerical value between 0 and 100. High PIDX value indicates high privacy risk in social networks. A privacy index function PIDX(i, j) is proposed to evaluate actor A j 's privacy exposure to actor A j . Using this model, it is convenient to evaluate any users' privacy exposure to their friends, friends of friends, and public. We further develop a social network privacy simulation tool, OSNPIDX, to verify the effectiveness of our approach. |
Author | Yong Wang Nepali, Raj Kumar Nikolai, Jason |
Author_xml | – sequence: 1 surname: Yong Wang fullname: Yong Wang email: yong.wang@dsu.edu organization: Coll. of Bus. & Inf. Syst., Dakota State Univ., Madison, SD, USA – sequence: 2 givenname: Raj Kumar surname: Nepali fullname: Nepali, Raj Kumar email: rknepali@pluto.dsu.edu organization: Coll. of Bus. & Inf. Syst., Dakota State Univ., Madison, SD, USA – sequence: 3 givenname: Jason surname: Nikolai fullname: Nikolai, Jason email: janikolai@pluto.dsu.edu organization: Coll. of Bus. & Inf. Syst., Dakota State Univ., Madison, SD, USA |
BookMark | eNotj8tOwzAQRY0ECyj9Adj4BxI8fiT2Elk8KlVlQffV2J5IFomDkhTUv6cSXVyd3dG5d-y6jIUYewBRAwj3tPF-52spQNdNa43W4oqtXWtBt85JZay9ZfA5xow9L7T8jtMX_57yD8YTHwjn40QDlYVjSXzOw7HHJY_lnt102M-0vnDF9q8ve_9ebT_eNv55W2UnliqA1kHKlpJpbIiyQaIQreyCM1rieVJEECpFE4ga6VJABeBQYOwSgFqxx39tJqLDOWvA6XS4_FB_sgZCVA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCNC.2014.6785440 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781479923588 1479923583 |
EndPage | 806 |
ExternalDocumentID | 6785440 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-b144b227ed568bc26aeebc82fb9542a54220c103dc5bee629dba3119a0acfd113 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:25 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-b144b227ed568bc26aeebc82fb9542a54220c103dc5bee629dba3119a0acfd113 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6785440 |
PublicationCentury | 2000 |
PublicationDate | 2014-Feb. |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-Feb. |
PublicationDecade | 2010 |
PublicationTitle | 2014 International Conference on Computing, Networking and Communications (ICNC) |
PublicationTitleAbbrev | ICCNC |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6270005 |
Snippet | Privacy has become an important concern in online social networks. One of the fundamental challenging issues is privacy measurement. Without a practical and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 802 |
SubjectTerms | Data privacy Indexes Numerical models Privacy privacy index privacy measurement Sensitivity simulation Social network services social networks SONET |
Title | Social network privacy measurement and simulation |
URI | https://ieeexplore.ieee.org/document/6785440 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB4_udjObze6eF0sVWjxU6K1kkgkU6bbUraC_3n21RfHgIRBCIJlJyDCT75th7B6cMGlMxgPlEk9akXhJap2H4DQqA5JcxXceT9ToVT7PolmHPey5MERUg8_Ir7r1X75dmW0VKhuUD2skZemgH5XXrOFq7XgwQTp4yrJJVoG1pN9O_FExpTYYwxM23i3V4ETe_G2Bvvn6lYXxv3s5Zf0DNY-_7I3OGetQ3mOiIdnyvMF08_Vm8aHNJ18eAoBc55a_L5Ztta4-mw4fp9nIa2sheIs0KDws_R4EiMlGKkEDShOhScBhGknQZYPAiCC0JkIiBalFHQqR6kAbZ4UIz1k3X-V0wTigtQpiDAUIiTGiDVRCygYYWROK6JL1Kmnn6ybbxbwV9Orv4Wt2XGm8wTHfsG6x2dJtaaYLvKvP5xu-mZYq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA2lHvSk0orf7sGj2W6ySXb3vFhabYuHCr2VTDILRbotdVfQX-9-tUXx4CEQQiCZBPKYyXszhNzzhJkoQEO5SkIqLAtpGNmEAk80KMMFJqXeeTxRg1fxNJOzFnnYaWEQsSKfoVt2q798uzJ5GSrrFQ-rFKJw0A8K3BeyVmttlTBe1BvG8SQu6VrCbab-qJlSQUb_mIy3i9VMkTc3z8A1X7_yMP53NyekuxfnOS872DklLUw7hNUyWyetWd3OerP40ObTWe5DgI5OrfO-WDb1urpk2n-cxgPaVEOgi8jLKBSeD3AeoJUqBMOVRgQT8gQiKbguGvcM83xrJCAqHlnQPmOR9rRJLGP-GWmnqxTPicPBWsUD8BlnAgIA66kQlfVAWuMzeUE6pbXzdZ3vYt4Yevn38B05HEzHo_loOHm-Ikfl6des5mvSzjY53hSgncFtdVffzWKZdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Computing%2C+Networking+and+Communications+%28ICNC%29&rft.atitle=Social+network+privacy+measurement+and+simulation&rft.au=Yong+Wang&rft.au=Nepali%2C+Raj+Kumar&rft.au=Nikolai%2C+Jason&rft.date=2014-02-01&rft.pub=IEEE&rft.spage=802&rft.epage=806&rft_id=info:doi/10.1109%2FICCNC.2014.6785440&rft.externalDocID=6785440 |