Time Series Clustering Based on ICA for Stock Data Analysis

Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional difficulties. The unique structure of time series makes many traditional clustering methods unable to apply directly. This paper presents a nov...

Full description

Saved in:
Bibliographic Details
Published in2008 4th International Conference on Wireless Communications, Networking and Mobile Computing pp. 1 - 4
Main Authors Chonghui Guo, Hongfeng Jia, Na Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2008
Subjects
Online AccessGet full text
ISBN9781424421077
1424421071
ISSN2161-9646
DOI10.1109/WiCom.2008.2534

Cover

Loading…
Abstract Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional difficulties. The unique structure of time series makes many traditional clustering methods unable to apply directly. This paper presents a novel feature-based approach to time series clustering, which first converts the raw time series data into feature vectors of lower dimension by using ICA algorithm, and then applies a modified k-means algorithm to the extracted feature vectors. Finally, to validate effectiveness and feasibility of the presented method, we use it to analyze the real world stock time series data and achieve reasonable results.
AbstractList Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional difficulties. The unique structure of time series makes many traditional clustering methods unable to apply directly. This paper presents a novel feature-based approach to time series clustering, which first converts the raw time series data into feature vectors of lower dimension by using ICA algorithm, and then applies a modified k-means algorithm to the extracted feature vectors. Finally, to validate effectiveness and feasibility of the presented method, we use it to analyze the real world stock time series data and achieve reasonable results.
Author Chonghui Guo
Hongfeng Jia
Na Zhang
Author_xml – sequence: 1
  surname: Chonghui Guo
  fullname: Chonghui Guo
  organization: Inst. of Syst. Eng., Dalian Univ. of Technol., Dalian
– sequence: 2
  surname: Hongfeng Jia
  fullname: Hongfeng Jia
– sequence: 3
  surname: Na Zhang
  fullname: Na Zhang
BookMark eNo1jrtOw0AURBeRSCTBNQXN_oDD3efdFVUwTykSRSJBF63ta7SQ2Mhrivw9RsA0M1Oc0czZpO1aYuxCwFII8FcvsegOSwngltIofcLmQkutpQD3esoyj-6_I07YTAorcm-1nbL5D-QBLKozlqX0DqO0Uc7hjF1v44H4hvpIiRf7rzSMsX3jNyFRzbuWPxUr3nQ93wxd9cFvwxD4qg37Y4rpnE2bsE-U_fmCbe_vtsVjvn5-GLF1Hj0MeSmglDLIYMerpUGDiIrIWVMqG0oH1qGRLtRNJVAabCqyvtZUyQaUqLxasMvf2UhEu88-HkJ_3GnrAKVS31VfTFo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WiCom.2008.2534
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 142442108X
9781424421084
EndPage 4
ExternalDocumentID 4680723
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-b10b22a2a6108b5757773ee865b36ab80687528adfc17257fce69d4ec2f031c93
IEDL.DBID RIE
ISBN 9781424421077
1424421071
ISSN 2161-9646
IngestDate Wed Aug 27 02:11:50 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008900673
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b10b22a2a6108b5757773ee865b36ab80687528adfc17257fce69d4ec2f031c93
PageCount 4
ParticipantIDs ieee_primary_4680723
PublicationCentury 2000
PublicationDate 2008-Oct.
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-Oct.
PublicationDecade 2000
PublicationTitle 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing
PublicationTitleAbbrev WiCom
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453887
ssj0003177788
Score 1.4959507
Snippet Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clustering algorithms
Clustering methods
Data analysis
Data engineering
Data mining
Independent component analysis
Partitioning algorithms
Predictive models
Principal component analysis
Signal processing algorithms
Title Time Series Clustering Based on ICA for Stock Data Analysis
URI https://ieeexplore.ieee.org/document/4680723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbeI4jiMmKFQFqQiJIrpVflykiipFkCz8es55lAoxsMXJYp_l3Hfn-74j5CKI8IhFkfYgteBx5YMnreQYqoQYrRjra-uIwpNHMX7hD7No1iKXay4MAJTFZ9B3j-Vdvl2ZwqXKBlxIP2Zhm7QxcKu4Wut8CkKTsIEabox-MY7LtpMMQY2XCC4aXhdGOXHQyD3V47iW_Qn8ZPC6wLNYlVmyyHVU3ui7Urqd0Q6ZNBOuqk3e-kWu--brl5bjf1e0S3o_BD_6tHZde6QF2T7Z3tAm7JIrRw6hLnkGn3S4LJygAn6gN-j2LF1l9H54TRHx0uccf6n0VuWKNgonPTId3U2HY6_utOAtEj_3dOBrxhRTiKWkRgCHpgsBpIh0KJSWvsCohkllU4N4J4pTAyKxHAxL0c4mCQ9IJ1tlcEiou3dLrVXo9BiHNFEhaCtFLIRJIOXsiHSdFebvlZbGvDbA8d-vT8gWa_Rng1PSyT8KOEMQkOvzcve_AakjqEA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGYCFjxbxjQdG0iZO7CRigkLVQlshUUS3yh8XqQKlCJKFX885aUqFGNjiZElOdt67s987Qi48jkuMc-VAYsAJpAtOZKIAUxUfsxVtXGWsUHg4Er3n4H7CJzVyudTCAEBx-Axa9rLYyzdzndtSWTsQkRsyf42sI-5zr1RrLSsqSE78imzYMSJjGBaNJxnSGicWgaiUXZjnhF5l-LQYhwvjH8-N2y8zXI3lQUvGbU_llc4rBfB0t8mweuXyvMlrK89US3_9cnP87zftkOaPxI8-LsFrl9Qg3SNbK-6EDXJl5SHUls_gk3becmupgA_oDQKfofOU9jvXFDkvfcrwp0pvZSZp5XHSJOPu3bjTcxa9FpxZ7GaO8lzFmGQS2VSkkMJh6HyASHDlC6kiV2BewyJpEo2Mh4eJBhGbADRLMM469vdJPZ2ncECo3XlLjJEIeyyAJJY-KBOJUAgdQxKwQ9KwUZi-l24a00UAjv6-fU42euPhYDrojx6OySar3Gi9E1LPPnI4RUqQqbNiJnwDq7CriQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+4th+International+Conference+on+Wireless+Communications%2C+Networking+and+Mobile+Computing&rft.atitle=Time+Series+Clustering+Based+on+ICA+for+Stock+Data+Analysis&rft.au=Chonghui+Guo&rft.au=Hongfeng+Jia&rft.au=Na+Zhang&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9781424421077&rft.issn=2161-9646&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWiCom.2008.2534&rft.externalDocID=4680723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-9646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-9646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-9646&client=summon