Time Series Clustering Based on ICA for Stock Data Analysis
Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional difficulties. The unique structure of time series makes many traditional clustering methods unable to apply directly. This paper presents a nov...
Saved in:
Published in | 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing pp. 1 - 4 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2008
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424421077 1424421071 |
ISSN | 2161-9646 |
DOI | 10.1109/WiCom.2008.2534 |
Cover
Loading…
Abstract | Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional difficulties. The unique structure of time series makes many traditional clustering methods unable to apply directly. This paper presents a novel feature-based approach to time series clustering, which first converts the raw time series data into feature vectors of lower dimension by using ICA algorithm, and then applies a modified k-means algorithm to the extracted feature vectors. Finally, to validate effectiveness and feasibility of the presented method, we use it to analyze the real world stock time series data and achieve reasonable results. |
---|---|
AbstractList | Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional difficulties. The unique structure of time series makes many traditional clustering methods unable to apply directly. This paper presents a novel feature-based approach to time series clustering, which first converts the raw time series data into feature vectors of lower dimension by using ICA algorithm, and then applies a modified k-means algorithm to the extracted feature vectors. Finally, to validate effectiveness and feasibility of the presented method, we use it to analyze the real world stock time series data and achieve reasonable results. |
Author | Chonghui Guo Hongfeng Jia Na Zhang |
Author_xml | – sequence: 1 surname: Chonghui Guo fullname: Chonghui Guo organization: Inst. of Syst. Eng., Dalian Univ. of Technol., Dalian – sequence: 2 surname: Hongfeng Jia fullname: Hongfeng Jia – sequence: 3 surname: Na Zhang fullname: Na Zhang |
BookMark | eNo1jrtOw0AURBeRSCTBNQXN_oDD3efdFVUwTykSRSJBF63ta7SQ2Mhrivw9RsA0M1Oc0czZpO1aYuxCwFII8FcvsegOSwngltIofcLmQkutpQD3esoyj-6_I07YTAorcm-1nbL5D-QBLKozlqX0DqO0Uc7hjF1v44H4hvpIiRf7rzSMsX3jNyFRzbuWPxUr3nQ93wxd9cFvwxD4qg37Y4rpnE2bsE-U_fmCbe_vtsVjvn5-GLF1Hj0MeSmglDLIYMerpUGDiIrIWVMqG0oH1qGRLtRNJVAabCqyvtZUyQaUqLxasMvf2UhEu88-HkJ_3GnrAKVS31VfTFo |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WiCom.2008.2534 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 142442108X 9781424421084 |
EndPage | 4 |
ExternalDocumentID | 4680723 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-b10b22a2a6108b5757773ee865b36ab80687528adfc17257fce69d4ec2f031c93 |
IEDL.DBID | RIE |
ISBN | 9781424421077 1424421071 |
ISSN | 2161-9646 |
IngestDate | Wed Aug 27 02:11:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008900673 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-b10b22a2a6108b5757773ee865b36ab80687528adfc17257fce69d4ec2f031c93 |
PageCount | 4 |
ParticipantIDs | ieee_primary_4680723 |
PublicationCentury | 2000 |
PublicationDate | 2008-Oct. |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-Oct. |
PublicationDecade | 2000 |
PublicationTitle | 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing |
PublicationTitleAbbrev | WiCom |
PublicationYear | 2008 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453887 ssj0003177788 |
Score | 1.4959507 |
Snippet | Time series clustering is an important task in time series data mining. Compared to traditional clustering problems, time series clustering poses additional... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Clustering algorithms Clustering methods Data analysis Data engineering Data mining Independent component analysis Partitioning algorithms Predictive models Principal component analysis Signal processing algorithms |
Title | Time Series Clustering Based on ICA for Stock Data Analysis |
URI | https://ieeexplore.ieee.org/document/4680723 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkbeI4jiMmKFQFqQiJIrpVflykiipFkCz8es55lAoxsMXJYp_l3Hfn-74j5CKI8IhFkfYgteBx5YMnreQYqoQYrRjra-uIwpNHMX7hD7No1iKXay4MAJTFZ9B3j-Vdvl2ZwqXKBlxIP2Zhm7QxcKu4Wut8CkKTsIEabox-MY7LtpMMQY2XCC4aXhdGOXHQyD3V47iW_Qn8ZPC6wLNYlVmyyHVU3ui7Urqd0Q6ZNBOuqk3e-kWu--brl5bjf1e0S3o_BD_6tHZde6QF2T7Z3tAm7JIrRw6hLnkGn3S4LJygAn6gN-j2LF1l9H54TRHx0uccf6n0VuWKNgonPTId3U2HY6_utOAtEj_3dOBrxhRTiKWkRgCHpgsBpIh0KJSWvsCohkllU4N4J4pTAyKxHAxL0c4mCQ9IJ1tlcEiou3dLrVXo9BiHNFEhaCtFLIRJIOXsiHSdFebvlZbGvDbA8d-vT8gWa_Rng1PSyT8KOEMQkOvzcve_AakjqEA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGYCFjxbxjQdG0iZO7CRigkLVQlshUUS3yh8XqQKlCJKFX885aUqFGNjiZElOdt67s987Qi48jkuMc-VAYsAJpAtOZKIAUxUfsxVtXGWsUHg4Er3n4H7CJzVyudTCAEBx-Axa9rLYyzdzndtSWTsQkRsyf42sI-5zr1RrLSsqSE78imzYMSJjGBaNJxnSGicWgaiUXZjnhF5l-LQYhwvjH8-N2y8zXI3lQUvGbU_llc4rBfB0t8mweuXyvMlrK89US3_9cnP87zftkOaPxI8-LsFrl9Qg3SNbK-6EDXJl5SHUls_gk3becmupgA_oDQKfofOU9jvXFDkvfcrwp0pvZSZp5XHSJOPu3bjTcxa9FpxZ7GaO8lzFmGQS2VSkkMJh6HyASHDlC6kiV2BewyJpEo2Mh4eJBhGbADRLMM469vdJPZ2ncECo3XlLjJEIeyyAJJY-KBOJUAgdQxKwQ9KwUZi-l24a00UAjv6-fU42euPhYDrojx6OySar3Gi9E1LPPnI4RUqQqbNiJnwDq7CriQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+4th+International+Conference+on+Wireless+Communications%2C+Networking+and+Mobile+Computing&rft.atitle=Time+Series+Clustering+Based+on+ICA+for+Stock+Data+Analysis&rft.au=Chonghui+Guo&rft.au=Hongfeng+Jia&rft.au=Na+Zhang&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9781424421077&rft.issn=2161-9646&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWiCom.2008.2534&rft.externalDocID=4680723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-9646&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-9646&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-9646&client=summon |