An Ensemble Learning Framework for Online Web Spam Detection
Most of the existing studies about web spam detection explicitly or implicitly assume that the detection process is performed offline on the search engine side. However, we argue that online web spam detection is even useful in some specific scenarios. We propose to implement a web browser plug-in t...
Saved in:
Published in | 2013 12th International Conference on Machine Learning and Applications Vol. 1; pp. 40 - 45 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most of the existing studies about web spam detection explicitly or implicitly assume that the detection process is performed offline on the search engine side. However, we argue that online web spam detection is even useful in some specific scenarios. We propose to implement a web browser plug-in to support online web spam detection. Three different sets of spam labeling data are collected and adopted for learning a reliable web spam classifier. An empirical study is conducted on the benchmark web spam data collection. The statistical analysis of the data set verifies the necessity of online web spam detection. The performance of the proposed ensemble learning framework for online web spam detection is also examined and it meets the requirement of online webs Pam detection. |
---|---|
AbstractList | Most of the existing studies about web spam detection explicitly or implicitly assume that the detection process is performed offline on the search engine side. However, we argue that online web spam detection is even useful in some specific scenarios. We propose to implement a web browser plug-in to support online web spam detection. Three different sets of spam labeling data are collected and adopted for learning a reliable web spam classifier. An empirical study is conducted on the benchmark web spam data collection. The statistical analysis of the data set verifies the necessity of online web spam detection. The performance of the proposed ensemble learning framework for online web spam detection is also examined and it meets the requirement of online webs Pam detection. |
Author | Cailing Dong Bin Zhou |
Author_xml | – sequence: 1 surname: Cailing Dong fullname: Cailing Dong email: cailing.dong@umbc.edu organization: Dept. of Inf. Syst., Univ. of Maryland, Baltimore County, Baltimore, MD, USA – sequence: 2 surname: Bin Zhou fullname: Bin Zhou email: bzhou@umbc.edu organization: Dept. of Inf. Syst., Univ. of Maryland, Baltimore County, Baltimore, MD, USA |
BookMark | eNotzD1Lw0AYAOATdNDa0cnl_kDi--a-wSXEthYiHSw4lkvynhwml3INiP_eQadne-7YdZoTMfaAUCKCe9o3b21dVoCiRHXF1s5YMNophVK6W_ZcJ75JF5q6kXhLPqeYPvk2-4m-5_zFw5z5IY0xEf-gjr-f_cRfaKF-iXO6ZzfBjxda_7tix-3m2LwW7WG3b-q2iA6WwocwSIcGQh9QQg_oZUV28ACOrNSiQkFSD14gGml6UpZsp6QMegDlvFixx782EtHpnOPk889JGyuVVeIXDf1DFw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLA.2013.15 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9780769551449 0769551440 |
EndPage | 45 |
ExternalDocumentID | 6784585 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-affd49170fcf140c01a42e8da009e8463213e46da311747ce58e8b544f6d059a3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:05 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-affd49170fcf140c01a42e8da009e8463213e46da311747ce58e8b544f6d059a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6784585 |
PublicationCentury | 2000 |
PublicationDate | 2013-Dec. |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2013 12th International Conference on Machine Learning and Applications |
PublicationTitleAbbrev | icmla |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.5670654 |
Snippet | Most of the existing studies about web spam detection explicitly or implicitly assume that the detection process is performed offline on the search engine... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 40 |
SubjectTerms | Browsers Detectors ensemble learning Labeling online web spam detection personalization Search engines Servers Unsolicited electronic mail Web pages |
Title | An Ensemble Learning Framework for Online Web Spam Detection |
URI | https://ieeexplore.ieee.org/document/6784585 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjyptOKbPXg0aR6TNAEvpTZUsSJYsbeym8yKaNOiycVf72zSh4gHb8te9gX7fbP7zTcAF4zBJoXRs5gqKwu1-d_VqWsRxirULiqpK7XFfTh6wttpMG3A5SYXhogq8RnZpln95WeLtDRPZV2-WJHpbROavTiuc7W2tpndm8H4rm_EWr5titz-KJZSYUWyC-P1KLVE5M0uC2WnX78MGP87jT3obLPyxMMGb_ahQXkbrvq5GOafNFfvJFZmqS8iWUuuBHNSUduJimdS4nEp5-KaikqAlXdgkgwng5G1qohgvcZOYUmtM-T4ytEpb6OTOq5Ej6JMMlEiJhK-5_qEYSZ9lwONXkpBRJEKEHWYMY2S_gG08kVOhyA85cVhICPN4RKizyDFvEkpJgAURpmLR9A2C58ta8-L2WrNx393n8CO2fda5nEKreKjpDMG60KdV6f0DWP3lNA |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSkBozf9uDRXfajW5fEC0EI6EJMxMiNtLtTYpSF6HLx1zvdXcAYD96aXvqV9L1p37wBuCIMNimMnkVUWVlcm_9dHbsW8qYS2uVK6lxtMRS9Z34_DsYVuF7nwiBiLj5D2zTzv_xkHi_NU1mDLlZO9HYLtolXh6LI1toYZzb67UHUMnIt3zZlbn-US8nRorsHg9U4hUjkzV5myo6_flkw_nci-1Df5OWxxzXiHEAF0xrctlLWST9xpt6RlXapU9Zdia4YsVJWGIqyF1TsaSFn7A6zXIKV1mHU7YzaPausiWC9Np3MklonnCIsR8e0kU7suJJ7GCaSqBISlfA910cuEum7FGrcxBiEGKqAcy0SIlLSP4RqOk_xCJinvKYIZKgpYOLcJ5gi5qQUUQAUYeLyY6iZhU8WhevFpFzzyd_dl7DTGw2iSdQfPpzCrjmDQvRxBtXsY4nnBN2ZushP7BtfDJgb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+12th+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=An+Ensemble+Learning+Framework+for+Online+Web+Spam+Detection&rft.au=Cailing+Dong&rft.au=Bin+Zhou&rft.date=2013-12-01&rft.pub=IEEE&rft.volume=1&rft.spage=40&rft.epage=45&rft_id=info:doi/10.1109%2FICMLA.2013.15&rft.externalDocID=6784585 |