HEp-2 cell classification and segmentation using motif texture patterns and spatial features with random forests
Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases. Analysis of HEp2 cells is important and in this work we consider automatic cell segmentation and classification using spatial and texture pattern f...
Saved in:
Published in | 2016 23rd International Conference on Pattern Recognition (ICPR) pp. 90 - 95 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICPR.2016.7899614 |
Cover
Loading…
Abstract | Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases. Analysis of HEp2 cells is important and in this work we consider automatic cell segmentation and classification using spatial and texture pattern features and random forest classifiers. In this paper, we summarize our efforts in classification and segmentation tasks proposed in ICPR 2016 contest. For the cell level staining pattern classification (Task 1), we utilized texture features such as rotational invariant co-occurrence (RIC) versions of the well-known local binary pattern (LBP), median binary pattern (MBP), joint adaptive median binary pattern (JAMBP), and motif labels (ML) along with other optimized features. We report the classification results utilizing different classifiers such as the k-nearest neighbors (kNN), support vector machine (SVM), and random forest (RF). We obtained the best accuracy of 94.26% for six cell classes with RIC-LBP combined with a motif pattern co-occurrence labels (MCL). For specimen level staining pattern classification (Task 2) we utilize a combination RIC-LBP with RF classifier and obtain 80% accuracy for seven classes. For cell segmentation (Task 4), we use our optimized multiscale spatial feature bank along with RF classifier for pixel-wise labeling to achieve an F-measure of 84.26% for 1008 images. |
---|---|
AbstractList | Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases. Analysis of HEp2 cells is important and in this work we consider automatic cell segmentation and classification using spatial and texture pattern features and random forest classifiers. In this paper, we summarize our efforts in classification and segmentation tasks proposed in ICPR 2016 contest. For the cell level staining pattern classification (Task 1), we utilized texture features such as rotational invariant co-occurrence (RIC) versions of the well-known local binary pattern (LBP), median binary pattern (MBP), joint adaptive median binary pattern (JAMBP), and motif labels (ML) along with other optimized features. We report the classification results utilizing different classifiers such as the k-nearest neighbors (kNN), support vector machine (SVM), and random forest (RF). We obtained the best accuracy of 94.26% for six cell classes with RIC-LBP combined with a motif pattern co-occurrence labels (MCL). For specimen level staining pattern classification (Task 2) we utilize a combination RIC-LBP with RF classifier and obtain 80% accuracy for seven classes. For cell segmentation (Task 4), we use our optimized multiscale spatial feature bank along with RF classifier for pixel-wise labeling to achieve an F-measure of 84.26% for 1008 images. |
Author | Kassim, Yasmin M. Seetharaman, Guna Oraibi, Zakariya A. Palaniappan, Kannappan Surya Prasath, V. B. Guiriec, Jean-Baptiste Hafiane, Adel |
Author_xml | – sequence: 1 givenname: V. B. surname: Surya Prasath fullname: Surya Prasath, V. B. email: prasaths@missouri.edu organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA – sequence: 2 givenname: Yasmin M. surname: Kassim fullname: Kassim, Yasmin M. email: ymkgz8@mail.missouri.edu organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA – sequence: 3 givenname: Zakariya A. surname: Oraibi fullname: Oraibi, Zakariya A. email: zaonr5@mail.missouri.edu organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA – sequence: 4 givenname: Jean-Baptiste surname: Guiriec fullname: Guiriec, Jean-Baptiste email: jeanbaptiste.guiriec@insa-cvl.fr organization: INSA Centre Val de Loire, Univ. d'Orleans, Bourges, France – sequence: 5 givenname: Adel surname: Hafiane fullname: Hafiane, Adel email: adel.hafiane@insa-cvl.fr organization: INSA Centre Val de Loire, Univ. d'Orleans, Bourges, France – sequence: 6 givenname: Guna surname: Seetharaman fullname: Seetharaman, Guna email: guna@ieee.org organization: US Naval Res. Lab., Washington, DC, USA – sequence: 7 givenname: Kannappan surname: Palaniappan fullname: Palaniappan, Kannappan email: palaniappank@missouri.edu organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA |
BookMark | eNotkE1OwzAUhI0ECyg9AGLjCyTYjuOfJYoKrVSpCHVfvSTPxVLiRLEr4PYEpavRzDeaxTyQ2zAEJOSJs5xzZl921cdnLhhXuTbWKi5vyNpqw0tmmTRSi3sybjdjJmiDXUebDmL0zjeQ_BAohJZGPPcY0hJcog9n2g_JO5rwJ10mpCOkhFOIS3t2HjrqEP5hpN8-fdFpRkNP3TAnKT6SOwddxPVVV-T4tjlW22x_eN9Vr_vMW5YyaI2quQLusDRWCailbaUDlMYyZ7QotS6LukEmtCvnbiOYEbJQTkqmkBUr8rzMekQ8jZPvYfo9XW8o_gBuI1iC |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPR.2016.7899614 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509048472 1509048472 |
EndPage | 95 |
ExternalDocumentID | 7899614 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-ad86b16a1fe58962ab49d4fae4890f87257753bce027f586bc2082436f4406e03 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:47 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-ad86b16a1fe58962ab49d4fae4890f87257753bce027f586bc2082436f4406e03 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7899614 |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2016 23rd International Conference on Pattern Recognition (ICPR) |
PublicationTitleAbbrev | ICPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.133289 |
Snippet | Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 90 |
SubjectTerms | Image segmentation Imaging Pattern recognition Radio frequency Support vector machines Training Vegetation |
Title | HEp-2 cell classification and segmentation using motif texture patterns and spatial features with random forests |
URI | https://ieeexplore.ieee.org/document/7899614 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT55UWvHNHjyaNI_NdvdcWqpQKVKht7KP2SLatDTJxV_vThIVxYO3EAYSZlm--Wa-mSHkNlWedGQ69dyEeYIiuQm0jXQgwUmZOOMjaMx3zB759Jk9LLNlh9x99cIAQC0-gxAf61q-3ZoKU2WDoScHHLdWH3ji1vRqtYXKOJKD-9H8CbVaPGztfixMqfFickRmn19qZCKvYVXq0Lz_GsL43185Jv3vzjw6_8KcE9KBvEd20_EuSCjm4KnBaBjlP7XHqcotLWC9aTuMcoo69zVFBZ6jKPqo9kB39YzNvGisUWKt3qiDeuRnQTFTSz2i2e2G-gjXo0jRJ4vJeDGaBu0mheBFRmWgrOA65ip2kAnJE6WZtMwpYEJGTgz9tfWsRRvwHNVl3tYkPjJgKXfM4z1E6Snp5tsczggdWoMjz-LYRIIxACWFdVjui4SzQtlz0kNnrXbNrIxV66eLv19fkkM8sEYeckW65b6Caw_ypb6pT_cDZRCrQg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_3YNHk-Zjk2bPpSXVthSp0FvZ7M4W0aahSS7-eneSWFE8eAthIGGW5c2beTNDyL0vDOkIEt9wE2YICg-llSgnsThozj0tTQSN-Y7pLIxf2OMyWLbIw74XBgAq8RnY-FjV8tVWlpgq6_UNOQhxa_WBwX3G626tplTpOrw3HsyfUa0V2o3lj5UpFWKMjsn061u1UOTNLovElh-_xjD-92dOSPe7N4_O96hzSlqQdkgWDzPLo5iFpxLjYRQAVT6nIlU0h_Wm6TFKKSrd1xQ1eJqi7KPcAc2qKZtpXlujyFq8Uw3V0M-cYq6WGkxT2w01Ma7BkbxLFqPhYhBbzS4F65U7hSVUFCZuKFwNQcRDTySMK6YFsIg7Ouqbi2t4SyLBsFQdGFvpmdiA-aFmBvHB8c9IO92mcE5oX0kceua60okYAxA8UhoLfk6kVSTUBemgs1ZZPS1j1fjp8u_Xd-QwXkwnq8l49nRFjvDwarHINWkXuxJuDOQXyW110p-Md66S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+23rd+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=HEp-2+cell+classification+and+segmentation+using+motif+texture+patterns+and+spatial+features+with+random+forests&rft.au=Surya+Prasath%2C+V.+B.&rft.au=Kassim%2C+Yasmin+M.&rft.au=Oraibi%2C+Zakariya+A.&rft.au=Guiriec%2C+Jean-Baptiste&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=90&rft.epage=95&rft_id=info:doi/10.1109%2FICPR.2016.7899614&rft.externalDocID=7899614 |