HEp-2 cell classification and segmentation using motif texture patterns and spatial features with random forests

Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases. Analysis of HEp2 cells is important and in this work we consider automatic cell segmentation and classification using spatial and texture pattern f...

Full description

Saved in:
Bibliographic Details
Published in2016 23rd International Conference on Pattern Recognition (ICPR) pp. 90 - 95
Main Authors Surya Prasath, V. B., Kassim, Yasmin M., Oraibi, Zakariya A., Guiriec, Jean-Baptiste, Hafiane, Adel, Seetharaman, Guna, Palaniappan, Kannappan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/ICPR.2016.7899614

Cover

Loading…
Abstract Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases. Analysis of HEp2 cells is important and in this work we consider automatic cell segmentation and classification using spatial and texture pattern features and random forest classifiers. In this paper, we summarize our efforts in classification and segmentation tasks proposed in ICPR 2016 contest. For the cell level staining pattern classification (Task 1), we utilized texture features such as rotational invariant co-occurrence (RIC) versions of the well-known local binary pattern (LBP), median binary pattern (MBP), joint adaptive median binary pattern (JAMBP), and motif labels (ML) along with other optimized features. We report the classification results utilizing different classifiers such as the k-nearest neighbors (kNN), support vector machine (SVM), and random forest (RF). We obtained the best accuracy of 94.26% for six cell classes with RIC-LBP combined with a motif pattern co-occurrence labels (MCL). For specimen level staining pattern classification (Task 2) we utilize a combination RIC-LBP with RF classifier and obtain 80% accuracy for seven classes. For cell segmentation (Task 4), we use our optimized multiscale spatial feature bank along with RF classifier for pixel-wise labeling to achieve an F-measure of 84.26% for 1008 images.
AbstractList Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases. Analysis of HEp2 cells is important and in this work we consider automatic cell segmentation and classification using spatial and texture pattern features and random forest classifiers. In this paper, we summarize our efforts in classification and segmentation tasks proposed in ICPR 2016 contest. For the cell level staining pattern classification (Task 1), we utilized texture features such as rotational invariant co-occurrence (RIC) versions of the well-known local binary pattern (LBP), median binary pattern (MBP), joint adaptive median binary pattern (JAMBP), and motif labels (ML) along with other optimized features. We report the classification results utilizing different classifiers such as the k-nearest neighbors (kNN), support vector machine (SVM), and random forest (RF). We obtained the best accuracy of 94.26% for six cell classes with RIC-LBP combined with a motif pattern co-occurrence labels (MCL). For specimen level staining pattern classification (Task 2) we utilize a combination RIC-LBP with RF classifier and obtain 80% accuracy for seven classes. For cell segmentation (Task 4), we use our optimized multiscale spatial feature bank along with RF classifier for pixel-wise labeling to achieve an F-measure of 84.26% for 1008 images.
Author Kassim, Yasmin M.
Seetharaman, Guna
Oraibi, Zakariya A.
Palaniappan, Kannappan
Surya Prasath, V. B.
Guiriec, Jean-Baptiste
Hafiane, Adel
Author_xml – sequence: 1
  givenname: V. B.
  surname: Surya Prasath
  fullname: Surya Prasath, V. B.
  email: prasaths@missouri.edu
  organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA
– sequence: 2
  givenname: Yasmin M.
  surname: Kassim
  fullname: Kassim, Yasmin M.
  email: ymkgz8@mail.missouri.edu
  organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA
– sequence: 3
  givenname: Zakariya A.
  surname: Oraibi
  fullname: Oraibi, Zakariya A.
  email: zaonr5@mail.missouri.edu
  organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA
– sequence: 4
  givenname: Jean-Baptiste
  surname: Guiriec
  fullname: Guiriec, Jean-Baptiste
  email: jeanbaptiste.guiriec@insa-cvl.fr
  organization: INSA Centre Val de Loire, Univ. d'Orleans, Bourges, France
– sequence: 5
  givenname: Adel
  surname: Hafiane
  fullname: Hafiane, Adel
  email: adel.hafiane@insa-cvl.fr
  organization: INSA Centre Val de Loire, Univ. d'Orleans, Bourges, France
– sequence: 6
  givenname: Guna
  surname: Seetharaman
  fullname: Seetharaman, Guna
  email: guna@ieee.org
  organization: US Naval Res. Lab., Washington, DC, USA
– sequence: 7
  givenname: Kannappan
  surname: Palaniappan
  fullname: Palaniappan, Kannappan
  email: palaniappank@missouri.edu
  organization: Dept. of Comput. Sci., Univ. of Missouri-Columbia, Columbia, MO, USA
BookMark eNotkE1OwzAUhI0ECyg9AGLjCyTYjuOfJYoKrVSpCHVfvSTPxVLiRLEr4PYEpavRzDeaxTyQ2zAEJOSJs5xzZl921cdnLhhXuTbWKi5vyNpqw0tmmTRSi3sybjdjJmiDXUebDmL0zjeQ_BAohJZGPPcY0hJcog9n2g_JO5rwJ10mpCOkhFOIS3t2HjrqEP5hpN8-fdFpRkNP3TAnKT6SOwddxPVVV-T4tjlW22x_eN9Vr_vMW5YyaI2quQLusDRWCailbaUDlMYyZ7QotS6LukEmtCvnbiOYEbJQTkqmkBUr8rzMekQ8jZPvYfo9XW8o_gBuI1iC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR.2016.7899614
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509048472
1509048472
EndPage 95
ExternalDocumentID 7899614
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-ad86b16a1fe58962ab49d4fae4890f87257753bce027f586bc2082436f4406e03
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:47 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ad86b16a1fe58962ab49d4fae4890f87257753bce027f586bc2082436f4406e03
PageCount 6
ParticipantIDs ieee_primary_7899614
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 23rd International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.133289
Snippet Human epithelial (HEp-2) cell specimens are obtained from indirect immunofluorescence (IIF) imaging for diagnosis and management of autoimmune diseases....
SourceID ieee
SourceType Publisher
StartPage 90
SubjectTerms Image segmentation
Imaging
Pattern recognition
Radio frequency
Support vector machines
Training
Vegetation
Title HEp-2 cell classification and segmentation using motif texture patterns and spatial features with random forests
URI https://ieeexplore.ieee.org/document/7899614
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT55UWvHNHjyaNI_NdvdcWqpQKVKht7KP2SLatDTJxV_vThIVxYO3EAYSZlm--Wa-mSHkNlWedGQ69dyEeYIiuQm0jXQgwUmZOOMjaMx3zB759Jk9LLNlh9x99cIAQC0-gxAf61q-3ZoKU2WDoScHHLdWH3ji1vRqtYXKOJKD-9H8CbVaPGztfixMqfFickRmn19qZCKvYVXq0Lz_GsL43185Jv3vzjw6_8KcE9KBvEd20_EuSCjm4KnBaBjlP7XHqcotLWC9aTuMcoo69zVFBZ6jKPqo9kB39YzNvGisUWKt3qiDeuRnQTFTSz2i2e2G-gjXo0jRJ4vJeDGaBu0mheBFRmWgrOA65ip2kAnJE6WZtMwpYEJGTgz9tfWsRRvwHNVl3tYkPjJgKXfM4z1E6Snp5tsczggdWoMjz-LYRIIxACWFdVjui4SzQtlz0kNnrXbNrIxV66eLv19fkkM8sEYeckW65b6Caw_ypb6pT_cDZRCrQg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1KPehJpRW_3YNHk-Zjk2bPpSXVthSp0FvZ7M4W0aahSS7-eneSWFE8eAthIGGW5c2beTNDyL0vDOkIEt9wE2YICg-llSgnsThozj0tTQSN-Y7pLIxf2OMyWLbIw74XBgAq8RnY-FjV8tVWlpgq6_UNOQhxa_WBwX3G626tplTpOrw3HsyfUa0V2o3lj5UpFWKMjsn061u1UOTNLovElh-_xjD-92dOSPe7N4_O96hzSlqQdkgWDzPLo5iFpxLjYRQAVT6nIlU0h_Wm6TFKKSrd1xQ1eJqi7KPcAc2qKZtpXlujyFq8Uw3V0M-cYq6WGkxT2w01Ma7BkbxLFqPhYhBbzS4F65U7hSVUFCZuKFwNQcRDTySMK6YFsIg7Ouqbi2t4SyLBsFQdGFvpmdiA-aFmBvHB8c9IO92mcE5oX0kceua60okYAxA8UhoLfk6kVSTUBemgs1ZZPS1j1fjp8u_Xd-QwXkwnq8l49nRFjvDwarHINWkXuxJuDOQXyW110p-Md66S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+23rd+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=HEp-2+cell+classification+and+segmentation+using+motif+texture+patterns+and+spatial+features+with+random+forests&rft.au=Surya+Prasath%2C+V.+B.&rft.au=Kassim%2C+Yasmin+M.&rft.au=Oraibi%2C+Zakariya+A.&rft.au=Guiriec%2C+Jean-Baptiste&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=90&rft.epage=95&rft_id=info:doi/10.1109%2FICPR.2016.7899614&rft.externalDocID=7899614