A survey of software reliability growth models using non-parametric methods
In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of software quality assessment. Even though many conventional statistical models are successfully used to predict software reliability, no single...
Saved in:
Published in | 2014 IEEE International Conference on Computational Intelligence and Computing Research pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of software quality assessment. Even though many conventional statistical models are successfully used to predict software reliability, no single model can apply in all situations. Software reliability prediction is hard to achieve. In order to improve the accuracy of software reliability prediction, non-parametric methods are suggested. Recently many research works are going on with the combination of Artificial Neural Networks, Fuzzy Logic and Genetic Algorithm. This survey paper explains the different approaches of the non-parametric ANN method to improve the reliability prediction. |
---|---|
AbstractList | In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of software quality assessment. Even though many conventional statistical models are successfully used to predict software reliability, no single model can apply in all situations. Software reliability prediction is hard to achieve. In order to improve the accuracy of software reliability prediction, non-parametric methods are suggested. Recently many research works are going on with the combination of Artificial Neural Networks, Fuzzy Logic and Genetic Algorithm. This survey paper explains the different approaches of the non-parametric ANN method to improve the reliability prediction. |
Author | Sreedharan, Sasikumaran Saley, M. K. |
Author_xml | – sequence: 1 givenname: M. K. surname: Saley fullname: Saley, M. K. email: saley_mk@yahoo.com organization: Manonmaniam Sundaranar University, Thirunelveli, India – sequence: 2 givenname: Sasikumaran surname: Sreedharan fullname: Sreedharan, Sasikumaran email: drsasikumaran@gmail.com organization: Department of Computer Engineering, College of Computer Science, King Khalid University, Kingdom of Saudi Arabia |
BookMark | eNo1j71OwzAURo2AgZa-ACx-gQQ7_ssdKwtoRCUG2KubxGktJXFlp1R5eypRpqNvOZ_OgtyNYXSEPHGWc87gpbK2snnBuMxNIUrJ9Q1ZgSm5NAACjNK3ZPE_JDyQjzVNp_jjZho6mkI3nTE6Gl3vsfa9n2a6j-E8HegQWtcnekp-3NPLa3bEiIObom_oBYfQpkdy32Gf3OrKJfl6e_22m2z7-V7Z9TbzwKYMAXndyqbAupSiUbpmBYJizLSqUUJ0IJQxWneG1VwYLrUACZxji1IaJ5bk-c_qnXO7Y_QDxnl3rRW_8ylMbg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCIC.2014.7238416 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781479939756 1479939757 |
EndPage | 5 |
ExternalDocumentID | 7238416 |
Genre | lit-survey |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-a9a1bd4c2ab843c56b02a95007d5c533f9357766f70b137146394911ada447e3 |
IEDL.DBID | RIE |
ISBN | 1479939749 9781479939749 |
IngestDate | Wed Jun 26 19:42:32 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-a9a1bd4c2ab843c56b02a95007d5c533f9357766f70b137146394911ada447e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7238416 |
PublicationCentury | 2000 |
PublicationDate | 2014-Dec. |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE International Conference on Computational Intelligence and Computing Research |
PublicationTitleAbbrev | ICCIC |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.5989051 |
Snippet | In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial Neural Networks Fuzzy Neural Network Multi-Layer Perceptron Recurrent Neural Network Software Reliability Growth Model |
Title | A survey of software reliability growth models using non-parametric methods |
URI | https://ieeexplore.ieee.org/document/7238416 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG6Akyc1YHynB492jLVb6dEsEtBgTNSEG2m7X5GoYPbQ4F9vuzF8xIO3dYeuaZf-vnXfA6EzoH3F7ZtERGACd1pliLKwmxjFZWQYBUqdGnl8Ew0f2NUknDTQ-UYLAwAl-Qw8d1n-y0-WunBHZV0XkGUBRBM1uRDftFq2ZcsqE7WFU92uRTK-6I7ieBQ7Jhfz1r38iFMpq8lgG43rcVQkkievyJWnP35ZNP53oDuo86Xbw7ebirSLGrBoo-sLnBXpG6zw0uDM7rrvMgWcwvO8suhe4Zn9FM8fcRmKk2HHhJ_hxXJBnC34i0vc0rgKms466G5weR8PyTpCgcyFnxMpZE8lTAdS9RnVYaT8QIrQ4oIk1BboGUFDzqPIcF_1nHefxSvMbn8ykYxxoHuoZR8H-whL51tPTUg5d9rTQAG1PfmBiqTSEtgBartpmL5WHhnT9Qwc_n37CG25pahoIceolacFnNjinqvTclU_AUd6ocM |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CeNCTGjC-7cGjG2PtVnY0iwQUiImYcCPt-IpEBbOHBv96243hIx68bTt0Tdv0-637PQAukLYk1yvJClzlmtMqZUkNuy0lufAVo0ipUSP3B37ngd2MvFEFLtdaGETMyWdom8v8X_5kEWXmqKxhArI0gNiATc_gim9qLa7LrEbGQWniVN6XMhknaHTDsBsaLhezV-38CFTJ60l7B_plTwoayZOdpdKOPn6ZNP63q7tQ_1Lukbt1TdqDCs5rcHtFkix-wyVZKJLoffddxEhifJ4VJt1LMtUf4-kjyWNxEmK48FMyX8wtYwz-YjK3IlJETSd1uG9fD8OOtQpRsGaBk1oiEE05YZErZIvRyPOl44rA08hg4kUa6qmAepz7vuKObBr3Po1YmN4AxUQwxpHuQ1W_Dg-ACONcT5VHOTfqU1ci1S05rvSFjASyQ6iZYRi_Fi4Z49UIHP39-By2OsN-b9zrDm6PYdtMS0ESOYFqGmd4qkt9Ks_yGf4E9D-lEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Conference+on+Computational+Intelligence+and+Computing+Research&rft.atitle=A+survey+of+software+reliability+growth+models+using+non-parametric+methods&rft.au=Saley%2C+M.+K.&rft.au=Sreedharan%2C+Sasikumaran&rft.date=2014-12-01&rft.pub=IEEE&rft.isbn=1479939749&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCIC.2014.7238416&rft.externalDocID=7238416 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/sc.gif&client=summon&freeimage=true |