A survey of software reliability growth models using non-parametric methods

In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of software quality assessment. Even though many conventional statistical models are successfully used to predict software reliability, no single...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE International Conference on Computational Intelligence and Computing Research pp. 1 - 5
Main Authors Saley, M. K., Sreedharan, Sasikumaran
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of software quality assessment. Even though many conventional statistical models are successfully used to predict software reliability, no single model can apply in all situations. Software reliability prediction is hard to achieve. In order to improve the accuracy of software reliability prediction, non-parametric methods are suggested. Recently many research works are going on with the combination of Artificial Neural Networks, Fuzzy Logic and Genetic Algorithm. This survey paper explains the different approaches of the non-parametric ANN method to improve the reliability prediction.
AbstractList In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of software quality assessment. Even though many conventional statistical models are successfully used to predict software reliability, no single model can apply in all situations. Software reliability prediction is hard to achieve. In order to improve the accuracy of software reliability prediction, non-parametric methods are suggested. Recently many research works are going on with the combination of Artificial Neural Networks, Fuzzy Logic and Genetic Algorithm. This survey paper explains the different approaches of the non-parametric ANN method to improve the reliability prediction.
Author Sreedharan, Sasikumaran
Saley, M. K.
Author_xml – sequence: 1
  givenname: M. K.
  surname: Saley
  fullname: Saley, M. K.
  email: saley_mk@yahoo.com
  organization: Manonmaniam Sundaranar University, Thirunelveli, India
– sequence: 2
  givenname: Sasikumaran
  surname: Sreedharan
  fullname: Sreedharan, Sasikumaran
  email: drsasikumaran@gmail.com
  organization: Department of Computer Engineering, College of Computer Science, King Khalid University, Kingdom of Saudi Arabia
BookMark eNo1j71OwzAURo2AgZa-ACx-gQQ7_ssdKwtoRCUG2KubxGktJXFlp1R5eypRpqNvOZ_OgtyNYXSEPHGWc87gpbK2snnBuMxNIUrJ9Q1ZgSm5NAACjNK3ZPE_JDyQjzVNp_jjZho6mkI3nTE6Gl3vsfa9n2a6j-E8HegQWtcnekp-3NPLa3bEiIObom_oBYfQpkdy32Gf3OrKJfl6e_22m2z7-V7Z9TbzwKYMAXndyqbAupSiUbpmBYJizLSqUUJ0IJQxWneG1VwYLrUACZxji1IaJ5bk-c_qnXO7Y_QDxnl3rRW_8ylMbg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIC.2014.7238416
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479939756
1479939757
EndPage 5
ExternalDocumentID 7238416
Genre lit-survey
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-a9a1bd4c2ab843c56b02a95007d5c533f9357766f70b137146394911ada447e3
IEDL.DBID RIE
ISBN 1479939749
9781479939749
IngestDate Wed Jun 26 19:42:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-a9a1bd4c2ab843c56b02a95007d5c533f9357766f70b137146394911ada447e3
PageCount 5
ParticipantIDs ieee_primary_7238416
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle 2014 IEEE International Conference on Computational Intelligence and Computing Research
PublicationTitleAbbrev ICCIC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5989051
Snippet In this paper, we explore the different approaches of non-parametric models to predict the software reliability. Software reliability is an important part of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial Neural Networks
Fuzzy Neural Network
Multi-Layer Perceptron
Recurrent Neural Network
Software Reliability Growth Model
Title A survey of software reliability growth models using non-parametric methods
URI https://ieeexplore.ieee.org/document/7238416
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG6Akyc1YHynB492jLVb6dEsEtBgTNSEG2m7X5GoYPbQ4F9vuzF8xIO3dYeuaZf-vnXfA6EzoH3F7ZtERGACd1pliLKwmxjFZWQYBUqdGnl8Ew0f2NUknDTQ-UYLAwAl-Qw8d1n-y0-WunBHZV0XkGUBRBM1uRDftFq2ZcsqE7WFU92uRTK-6I7ieBQ7Jhfz1r38iFMpq8lgG43rcVQkkievyJWnP35ZNP53oDuo86Xbw7ebirSLGrBoo-sLnBXpG6zw0uDM7rrvMgWcwvO8suhe4Zn9FM8fcRmKk2HHhJ_hxXJBnC34i0vc0rgKms466G5weR8PyTpCgcyFnxMpZE8lTAdS9RnVYaT8QIrQ4oIk1BboGUFDzqPIcF_1nHefxSvMbn8ykYxxoHuoZR8H-whL51tPTUg5d9rTQAG1PfmBiqTSEtgBartpmL5WHhnT9Qwc_n37CG25pahoIceolacFnNjinqvTclU_AUd6ocM
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-CeNCTGjC-7cGjG2PtVnY0iwQUiImYcCPt-IpEBbOHBv96243hIx68bTt0Tdv0-637PQAukLYk1yvJClzlmtMqZUkNuy0lufAVo0ipUSP3B37ngd2MvFEFLtdaGETMyWdom8v8X_5kEWXmqKxhArI0gNiATc_gim9qLa7LrEbGQWniVN6XMhknaHTDsBsaLhezV-38CFTJ60l7B_plTwoayZOdpdKOPn6ZNP63q7tQ_1Lukbt1TdqDCs5rcHtFkix-wyVZKJLoffddxEhifJ4VJt1LMtUf4-kjyWNxEmK48FMyX8wtYwz-YjK3IlJETSd1uG9fD8OOtQpRsGaBk1oiEE05YZErZIvRyPOl44rA08hg4kUa6qmAepz7vuKObBr3Po1YmN4AxUQwxpHuQ1W_Dg-ACONcT5VHOTfqU1ci1S05rvSFjASyQ6iZYRi_Fi4Z49UIHP39-By2OsN-b9zrDm6PYdtMS0ESOYFqGmd4qkt9Ks_yGf4E9D-lEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Conference+on+Computational+Intelligence+and+Computing+Research&rft.atitle=A+survey+of+software+reliability+growth+models+using+non-parametric+methods&rft.au=Saley%2C+M.+K.&rft.au=Sreedharan%2C+Sasikumaran&rft.date=2014-12-01&rft.pub=IEEE&rft.isbn=1479939749&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCIC.2014.7238416&rft.externalDocID=7238416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/sc.gif&client=summon&freeimage=true