K-means cluster algorithm based on color image enhancement for cell segmentation

Color cell image recognition and segmentation are two important issues in the field of biomedical cell morphology. The conventional segmentation method of color cell images based on k-means cluster is unreliable, since the color information from every category is similar. This paper presents a new m...

Full description

Saved in:
Bibliographic Details
Published in2012 5th International Conference on Biomedical Engineering and Informatics pp. 295 - 299
Main Authors Yan, Man, Cai, Jianyong, Gao, Jiexing, Luo, Lili
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Color cell image recognition and segmentation are two important issues in the field of biomedical cell morphology. The conventional segmentation method of color cell images based on k-means cluster is unreliable, since the color information from every category is similar. This paper presents a new method about cell segmentation by k-means cluster based on color image enhancement. Firstly, the cumulative distributions of the R, G, and B component gray value are calculated to find the mean value in the distribution. Secondly, the enhanced images are divided into three categories as masking images by k-means clustering algorithm in Ycbcr color space. And then, the binary images are de-noised via the morphological processing. Finally, the leukocytes and erythrocytes are segmented. The experimental results based on image enhancement mechanism by k-means clustering showed that the algorithm has a good discriminating and segmenting effect and while maintaining critical information color image.
AbstractList Color cell image recognition and segmentation are two important issues in the field of biomedical cell morphology. The conventional segmentation method of color cell images based on k-means cluster is unreliable, since the color information from every category is similar. This paper presents a new method about cell segmentation by k-means cluster based on color image enhancement. Firstly, the cumulative distributions of the R, G, and B component gray value are calculated to find the mean value in the distribution. Secondly, the enhanced images are divided into three categories as masking images by k-means clustering algorithm in Ycbcr color space. And then, the binary images are de-noised via the morphological processing. Finally, the leukocytes and erythrocytes are segmented. The experimental results based on image enhancement mechanism by k-means clustering showed that the algorithm has a good discriminating and segmenting effect and while maintaining critical information color image.
Author Gao, Jiexing
Yan, Man
Cai, Jianyong
Luo, Lili
Author_xml – sequence: 1
  givenname: Man
  surname: Yan
  fullname: Yan, Man
  organization: College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
– sequence: 2
  givenname: Jianyong
  surname: Cai
  fullname: Cai, Jianyong
  organization: College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
– sequence: 3
  givenname: Jiexing
  surname: Gao
  fullname: Gao, Jiexing
  organization: College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
– sequence: 4
  givenname: Lili
  surname: Luo
  fullname: Luo, Lili
  organization: College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
BookMark eNo1kE9Pg0AUxNeoibbyAYyX_QLgPvb_UZtWG2v00HvzgAfFwGJYPPjtxVhPk5nkN5nMgl2EIRBjtyAyAOHvH1_X2ywXkGdGgwRtz9gClLESwCl7zhJv3b-X4oolMX4IIWbWzPg1e39Je8IQedl9xYlGjl0zjO107HmBkSo-BF4O3TDytseGOIUjhpJ6ChOv57SkruORmt8Ap3YIN-yyxi5SctIl22_W-9Vzunt72q4edmnrxZRi7pUW2jj0iNo5aRVJSQYt2ApBYYHOkss9ujJ3hTOooSplLbyCyhVGLtndX21LRIfPcV43fh9OH8gf6LBRfA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BMEI.2012.6513157
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467311847
1467311820
9781467311847
9781467311823
EndPage 299
ExternalDocumentID 6513157
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-a29450568a9aa588374e33e6a717da14aba87e829a8c28b86a51dc3f0941d8b63
IEDL.DBID RIE
ISBN 9781467311830
1467311839
IngestDate Wed Sep 03 07:09:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-a29450568a9aa588374e33e6a717da14aba87e829a8c28b86a51dc3f0941d8b63
PageCount 5
ParticipantIDs ieee_primary_6513157
PublicationCentury 2000
PublicationDate 2012-Oct.
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-Oct.
PublicationDecade 2010
PublicationTitle 2012 5th International Conference on Biomedical Engineering and Informatics
PublicationTitleAbbrev BMEI
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106109
Score 1.5283861
Snippet Color cell image recognition and segmentation are two important issues in the field of biomedical cell morphology. The conventional segmentation method of...
SourceID ieee
SourceType Publisher
StartPage 295
SubjectTerms cell segmentation
Clustering algorithms
Color
color cell image
Filling
Filtering
Image color analysis
Image enhancement
Image segmentation
k-means cluster
Morphology
Noise reduction
Pattern recognition
Ycbcr color space
Title K-means cluster algorithm based on color image enhancement for cell segmentation
URI https://ieeexplore.ieee.org/document/6513157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG62nTyp2Yy_04NHYUAptFfNlqmZ2WEmuy2lfWyLg5kJF_96-4Bt0XjwBqSBpm343tf3vq-E3HEvDdMQIzfBjYMOXE6iQdi1rFFZbAJdJdrHr9HoLXye8VmL3O-1MABQFZ-Bi5dVLt9sdIlbZf2I-8zncZu0LXGrtVqH_RTkNp6stFtRzHxE_p2lU3O_y2raZv2H8eAJC7sCt3npj9NVKnAZHpPxrlt1Tcm7WxaJq79-OTb-t98npHeQ8dHJHqBOSQvyLpm8OBlYfKJ6XaJJAlXrxWa7KpYZRUQzdJNTdLLe0lVm_zUU8iUuDPwCtQEuxZ1--gmLrBEt5T0yHQ6mjyOnOVbBWUmvcFQgQwx7hJJKcWEJagiMQaQssTPKD1WiRAwikEroQCQiUtw3mqWWB_pGJBE7I518k8M5oYZZuhMbYF4ahzb0SrBOUTIwccJlJOML0sXBmH_UxhnzZhwu_358RY5wQupKuWvSKbYl3FjEL5Lbaqq_AY_Rpf4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4MwGG7mPOhJzWb8tgePwoBSKFfNls2NZYeZ7Lb0ax9xgJlw8dfbF9iMxoM3IA00fRue9-t5itADdRb-wgfPjVFlgQKXJaRmZi9LYBYrT5aF9ngc9F_9lxmdNdDjngujtS6bz7QNl2UtX2WygFRZJ6AucWl4gA4N7lO3Ymt9Z1QgunGikr0VhMQF7N-JOtX3u7qmGdZ5irsDaO3y7Pq1P85XKeGld4Li3cSqrpI3u8iFLT9_aTb-d-anqP1N5MOTPUSdoYZOW2gytBJtEArLTQEyCZhvltl2na8SDJimcJZi0LLe4nVi_jZYpyvYGvAFbFxcDLl-_KGXSU1bStto2utOn_tWfbCCtY6c3OJe5IPjw3jEOWUmRPU1ITrgJrRT3PW54CzUzIs4kx4TLODUVZIsTCToKiYCco6aaZbqC4QVMQFPqDRxFiGYRECnYkS0CgWNgii8RC1YjPl7JZ0xr9fh6u_H9-ioP41H89FgPLxGx2Ccqm_uBjXzbaFvDf7n4q40-xdvFalH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+5th+International+Conference+on+Biomedical+Engineering+and+Informatics&rft.atitle=K-means+cluster+algorithm+based+on+color+image+enhancement+for+cell+segmentation&rft.au=Yan%2C+Man&rft.au=Cai%2C+Jianyong&rft.au=Gao%2C+Jiexing&rft.au=Luo%2C+Lili&rft.date=2012-10-01&rft.pub=IEEE&rft.isbn=9781467311830&rft.spage=295&rft.epage=299&rft_id=info:doi/10.1109%2FBMEI.2012.6513157&rft.externalDocID=6513157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467311830/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467311830/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467311830/sc.gif&client=summon&freeimage=true