Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique

Reliable, fast and efficient optic disc localization and blood-vessel detection are the primary tasks in computer analyses of retinal image. Most of the existing algorithms suffer due to inconsistent image contrast, varying individual condition, noises and computational complexity. This paper presen...

Full description

Saved in:
Bibliographic Details
Published in16th Int'l Conf. Computer and Information Technology pp. 98 - 102
Main Authors Mithun, Niluthpol Chowdhury, Das, Sourav, Fattah, Shaikh Anowarul
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2014
Subjects
Online AccessGet full text
DOI10.1109/ICCITechn.2014.6997365

Cover

Abstract Reliable, fast and efficient optic disc localization and blood-vessel detection are the primary tasks in computer analyses of retinal image. Most of the existing algorithms suffer due to inconsistent image contrast, varying individual condition, noises and computational complexity. This paper presents an algorithm to automatically detect landmark features of retinal image, such as optic disc and blood vessel. First, optic disc and blood vessel pixels are detected from blue plane of the image. Then, using OD location the vessel pixels are connected. The detection scheme utilizes basic operations like edge detection, binary thresholding and morphological operation. This method was evaluated on standard retinal image databases, such as STARE and DRIVE. Experimental results demonstrate that the high accuracy achieved by the proposed method is comparable to that reported by the most accurate methods in literature, alongside a substantial reduction of execution time. Thus the method may provide a reliable solution in automatic mass screening and diagnosis of the retinal diseases.
AbstractList Reliable, fast and efficient optic disc localization and blood-vessel detection are the primary tasks in computer analyses of retinal image. Most of the existing algorithms suffer due to inconsistent image contrast, varying individual condition, noises and computational complexity. This paper presents an algorithm to automatically detect landmark features of retinal image, such as optic disc and blood vessel. First, optic disc and blood vessel pixels are detected from blue plane of the image. Then, using OD location the vessel pixels are connected. The detection scheme utilizes basic operations like edge detection, binary thresholding and morphological operation. This method was evaluated on standard retinal image databases, such as STARE and DRIVE. Experimental results demonstrate that the high accuracy achieved by the proposed method is comparable to that reported by the most accurate methods in literature, alongside a substantial reduction of execution time. Thus the method may provide a reliable solution in automatic mass screening and diagnosis of the retinal diseases.
Author Fattah, Shaikh Anowarul
Mithun, Niluthpol Chowdhury
Das, Sourav
Author_xml – sequence: 1
  givenname: Niluthpol Chowdhury
  surname: Mithun
  fullname: Mithun, Niluthpol Chowdhury
  email: n.chy@samsung.com
  organization: Samsung R&D Inst. Bangladesh, Dhaka, Bangladesh
– sequence: 2
  givenname: Sourav
  surname: Das
  fullname: Das, Sourav
  email: sourav.das@samsung.com
  organization: Samsung R&D Inst. Bangladesh, Dhaka, Bangladesh
– sequence: 3
  givenname: Shaikh Anowarul
  surname: Fattah
  fullname: Fattah, Shaikh Anowarul
  email: fattah@eee.buet.ac.bd
  organization: Dept. of Electr. & Electron. Eng., BUET, Dhaka, Bangladesh
BookMark eNpFkE1qwzAQRlVoF22aExTKHKB2pUi2pWUw_TEEusk-KNIoETiSa8ulvUGPXZsEuprhfcxjZu7IdYgBCXlkNGeMquemrpstmmPIV5SJvFSq4mVxRZaqkkxUSnExkVvyux5TPOmEFiwmNMnHANFB7JI3YP1gQAcL-zZGC184DNiCD9Bj8kFP7UkfEMbBhwOcYt8dYxsP3uj2CdBOyb9ztjjUaewR8Dv1-ozTvKP_HPGe3DjdDri81AXZvr5s6_ds8_HW1OtN5hVNmWa6LLBwpcD9ilelkxUVTDvOmTRUcemcE8LuVSWoEdwwqWUxEWkMV_PIgjyctR4Rd10_HdD_7C7v4X_TRWOo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCITechn.2014.6997365
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479934973
1479934976
EndPage 102
ExternalDocumentID 6997365
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-a1a65e5f64eb2376f87041af3318c0938fff44db9740c43c18a85f448cc39eb23
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:37 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-a1a65e5f64eb2376f87041af3318c0938fff44db9740c43c18a85f448cc39eb23
PageCount 5
ParticipantIDs ieee_primary_6997365
PublicationCentury 2000
PublicationDate 2014-March
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-March
PublicationDecade 2010
PublicationTitle 16th Int'l Conf. Computer and Information Technology
PublicationTitleAbbrev ICCITechn
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6412488
Snippet Reliable, fast and efficient optic disc localization and blood-vessel detection are the primary tasks in computer analyses of retinal image. Most of the...
SourceID ieee
SourceType Publisher
StartPage 98
SubjectTerms Biomedical imaging
blood vessel
Blood vessels
diabetic retinopathy
Feature extraction
fundus image
Image edge detection
Image segmentation
morphological operation
optic disc
Optical imaging
Retina
Title Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique
URI https://ieeexplore.ieee.org/document/6997365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbNzA2adzYbjKiCtQiFTEUqVvl-IEqaIKqhIFfwM_m7KTlIQaWyLJixzqfz77L950JuRLKUja0o4AKm6CDYmWQKiqCJB1aHkeZiD09enYvJo_sbsEXLdLfcWGMMR58ZkJX9P_ydaEqFyobiDQdxYK3SRvVrOZqNaRfGqWD6Xg89fFoB9hiYfPyj1tT_KZxu09m28_VWJHnsCqzUL3_ysT43_EckN4XPQ8edhvPIWmZvEs-rquywOOn0aBN6QFWORQWCrQJChz5FmSuwQPV4c1lDH-BVQ6OxIi6BKs1GhZwKPgnWBco_K1R7IOLuH3r0_Vijc8HCmjZNzUzAnbJYHtkfnszH0-C5pqFYJVGZSCpFNxwKxg62WhuLK5gRqWNcbWrKI0Tay1jOkPHI1IsVjSRCceaRKk4dU2OSCcvcnPsYFKcDam1JpGayYjhU0g90opL1BTGTkjXCXH5WifSWDbyO_27-ozsuYmsAV_npFNuKnOBJ4Ayu_RT_wlGu7bh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGBsQtzYbjyiiqqFtmIoUrfK9QNV0ARVCQO_gJ_N2UnLQwwskWXFTnQ53_ku33dG6IorS2jbdgLCbQIBipWBUIQHiWhbFkdzHnt69GjM-4_0bsqmNdTacGGMMR58ZkLX9P_ydaYKlyq75kJ0Ys620Db4fcpKtlZF-yWRuB50uwOfkXaQLRpWt_84N8W7jd4eGq0fWKJFnsMin4fq_Vctxv--0T5qfhH08MPG9Rygmkkb6OOmyDPYgBqNtck9xCrFmcUZWAWFHf0Wy1RjD1XHb65m-AtepNjRGEGb8GIJpgU7HPwTXmYg_rVZbGGXc_s2p5vFGl8RFINtX5XcCLwpB9tEk97tpNsPqoMWgoWI8kASyZlhllMIs8HgWFjDlEgbw3pXkYgTay2leg6hR6RorEgiEwY9iVKxcEMOUT3NUnPkgFKMtom1JpGayojClUvd0YpJ0BVKj1HDCXH2WpbSmFXyO_m7-xLt9Cej4Ww4GN-fol33UUv41xmq56vCnMN-IJ9feDX4BP7Aui4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=16th+Int%27l+Conf.+Computer+and+Information+Technology&rft.atitle=Automated+detection+of+optic+disc+and+blood+vessel+in+retinal+image+using+morphological%2C+edge+detection+and+feature+extraction+technique&rft.au=Mithun%2C+Niluthpol+Chowdhury&rft.au=Das%2C+Sourav&rft.au=Fattah%2C+Shaikh+Anowarul&rft.date=2014-03-01&rft.pub=IEEE&rft.spage=98&rft.epage=102&rft_id=info:doi/10.1109%2FICCITechn.2014.6997365&rft.externalDocID=6997365