MR! super-resolution with two regularization parameters

The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR algorithm for MRI images via two regularization parameters can improve the SR performance in this paper. With the hypothesis that the sparse coeffi...

Full description

Saved in:
Bibliographic Details
Published in2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 901 - 905
Main Authors Ni Hao, Ruan Ruolin, Liu Fanghua, Wu Aixia
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR algorithm for MRI images via two regularization parameters can improve the SR performance in this paper. With the hypothesis that the sparse coefficients in the HR space and LR space are different in the dictionary training phase while the sparse coefficients in the two spaces are the same in the image reconstruction phase. Based on this, the algorithm in this paper introduces online dictionary learning algorithm to generate the accurate dictionary pair separately with the training regularization parameter λ r . In the image reconstruction phase, the reconstruction regularization parameter λ r is tuned to solve the best reconstruction sparse coefficient to recover the predicted HR image. In the experiments, the average PSNR and SSIM of the reconstructed images by the proposed algorithm is 1.3dB and 0.023 higher than the typical Couple Dictionary Learning SR algorithm. The SR performance is raised considerably to eliminate the noise and artifacts effectively.
AbstractList The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR algorithm for MRI images via two regularization parameters can improve the SR performance in this paper. With the hypothesis that the sparse coefficients in the HR space and LR space are different in the dictionary training phase while the sparse coefficients in the two spaces are the same in the image reconstruction phase. Based on this, the algorithm in this paper introduces online dictionary learning algorithm to generate the accurate dictionary pair separately with the training regularization parameter λ r . In the image reconstruction phase, the reconstruction regularization parameter λ r is tuned to solve the best reconstruction sparse coefficient to recover the predicted HR image. In the experiments, the average PSNR and SSIM of the reconstructed images by the proposed algorithm is 1.3dB and 0.023 higher than the typical Couple Dictionary Learning SR algorithm. The SR performance is raised considerably to eliminate the noise and artifacts effectively.
Author Ni Hao
Liu Fanghua
Wu Aixia
Ruan Ruolin
Author_xml – sequence: 1
  surname: Ni Hao
  fullname: Ni Hao
  organization: Sch. of Electron. & Inf. Eng., Hubei Univ. of Sci. & Technol., Xianning, China
– sequence: 2
  surname: Ruan Ruolin
  fullname: Ruan Ruolin
  email: rlruan@qq.com
  organization: Sch. of Biomed. Eng., Hubei Univ. of Sci. & Technol., Xianning, China
– sequence: 3
  surname: Liu Fanghua
  fullname: Liu Fanghua
  organization: Sch. of Electron. & Inf. Eng., Hubei Univ. of Sci. & Technol., Xianning, China
– sequence: 4
  surname: Wu Aixia
  fullname: Wu Aixia
  organization: Student Affairs Dept., Hubei Univ. of Sci. & Technol., Xianning, China
BookMark eNotj8FKxDAURSPowhn9Ad3UD2h9SZo0WQ5FncKI4LgfXtNXDXTakqYM-vUWndWFc-Fw74pd9kNPjN1xyDgH-1iV-02VCeA6K8xCCnvBVlyBBaUEV9eseH1_SKZ5pJAGmoZujn7ok5OPX0k8DUmgz7nD4H_wj48Y8EiRwnTDrlrsJro955rtn58-ym26e3upys0u9RZiagk5OJJGORQyz1vrUKJqtNNKFGSWPWIpjW5lYxoHuak1qFoLFKTyWq7Z_b_VE9FhDP6I4ftwfiJ_AWXdQqM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI.2016.7811079
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509055215
9781509055210
EndPage 905
ExternalDocumentID 7811079
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-9ea10ce385ca2344f9ca3a5d6c6527e8079238586f3d8dc048b605b62a2e54b3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:59 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9ea10ce385ca2344f9ca3a5d6c6527e8079238586f3d8dc048b605b62a2e54b3
PageCount 5
ParticipantIDs ieee_primary_7811079
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 3rd International Conference on Systems and Informatics (ICSAI)
PublicationTitleAbbrev ICSAI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6139492
Snippet The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR...
SourceID ieee
SourceType Publisher
StartPage 901
SubjectTerms Dictionaries
Image reconstruction
Image resolution
Magnetic resonance imaging
MRI
Prediction algorithms
sparse coding
Sparse matrices
super-resolution
Training
two regularization parameterss
Title MR! super-resolution with two regularization parameters
URI https://ieeexplore.ieee.org/document/7811079
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNBI9mm24emxylWFphRaxCbyXJTkHEtmx3Efz1JrvbiuLBWwiBZJJMJpPM9w1C18oYB4mkZGB5TPiCBZ1Tlhh_fdbaJlZAcBTTBzl-4fczMWuhmx0WBgCq4DOIQrH6y89WrgxPZf2AiqSJbqO2d9xqrNYWB0N1fzKc3k5CsJaMmoY_MqZUBmO0j9JtV3WcyFtUFjZyn79YGP87lgPU-4bm4ced0TlELVh2UZI-XeFNuYaceO-52Uw4PLHi4mOF8yrffN4gLnFg-34PUTCbHpqO7p6HY9JkRCCvmhZEgxlQB0wJZ2LG-UI7w4zIpJMiTkDRQAaohJILlqnMeeW03luxMjYxCG7ZEeosV0s4RnhgNPdtHHMQCOWcof5QFCpLmLPCCn2CukHk-bqmvJg30p7-XX2G9sK01xC9c9Qp8hIuvK0u7GW1SF-myZX1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NS8MwGA5zHvSksonfRtBjty5t2uTgQaZjdR-Im7CTI0nfiYjb6FqG_hT_in_OpO0miteBtxBCSPK-Sd4kz_MEoXMmhALfs62adInljhwz55i0hA6fOZe-pGAOip2u13xwbwd0UEAfSy4MAKTgM6iYZPqWH05UYq7KqoYVafs8h1C24G2uD2izy-BaW_OCkMZNv9608j8ErGduxxYHUbMVOIwqQRzXHXElHEFDT3mU-MBsI5_HKPNGTshCpd1Z6vheekQQoK50dK1raF1HGZRk3LAF78bm1aDeuwoMOMyr5A378UNLukE1ttDnomsZLuWlksSyot5_qT7-z75vo_I38RDfLbfUHVSAcQn5nfszPEumEFkRLKYKNhfIOJ5PcARPBkqb80mx0TJ_NRifWRn1VtDeXVQcT8awh3BNcFeXUY4CI5enhK2XfMpC31GSSsr3UckM8HCaCXoM87E9-Dv7FG00-532sB10W4do0xg8IyMeoWIcJXCso5JYnqTugdHjai3yBbwD8OM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=MR%21+super-resolution+with+two+regularization+parameters&rft.au=Ni+Hao&rft.au=Ruan+Ruolin&rft.au=Liu+Fanghua&rft.au=Wu+Aixia&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=901&rft.epage=905&rft_id=info:doi/10.1109%2FICSAI.2016.7811079&rft.externalDocID=7811079