MR! super-resolution with two regularization parameters
The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR algorithm for MRI images via two regularization parameters can improve the SR performance in this paper. With the hypothesis that the sparse coeffi...
Saved in:
Published in | 2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 901 - 905 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR algorithm for MRI images via two regularization parameters can improve the SR performance in this paper. With the hypothesis that the sparse coefficients in the HR space and LR space are different in the dictionary training phase while the sparse coefficients in the two spaces are the same in the image reconstruction phase. Based on this, the algorithm in this paper introduces online dictionary learning algorithm to generate the accurate dictionary pair separately with the training regularization parameter λ r . In the image reconstruction phase, the reconstruction regularization parameter λ r is tuned to solve the best reconstruction sparse coefficient to recover the predicted HR image. In the experiments, the average PSNR and SSIM of the reconstructed images by the proposed algorithm is 1.3dB and 0.023 higher than the typical Couple Dictionary Learning SR algorithm. The SR performance is raised considerably to eliminate the noise and artifacts effectively. |
---|---|
AbstractList | The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR algorithm for MRI images via two regularization parameters can improve the SR performance in this paper. With the hypothesis that the sparse coefficients in the HR space and LR space are different in the dictionary training phase while the sparse coefficients in the two spaces are the same in the image reconstruction phase. Based on this, the algorithm in this paper introduces online dictionary learning algorithm to generate the accurate dictionary pair separately with the training regularization parameter λ r . In the image reconstruction phase, the reconstruction regularization parameter λ r is tuned to solve the best reconstruction sparse coefficient to recover the predicted HR image. In the experiments, the average PSNR and SSIM of the reconstructed images by the proposed algorithm is 1.3dB and 0.023 higher than the typical Couple Dictionary Learning SR algorithm. The SR performance is raised considerably to eliminate the noise and artifacts effectively. |
Author | Ni Hao Liu Fanghua Wu Aixia Ruan Ruolin |
Author_xml | – sequence: 1 surname: Ni Hao fullname: Ni Hao organization: Sch. of Electron. & Inf. Eng., Hubei Univ. of Sci. & Technol., Xianning, China – sequence: 2 surname: Ruan Ruolin fullname: Ruan Ruolin email: rlruan@qq.com organization: Sch. of Biomed. Eng., Hubei Univ. of Sci. & Technol., Xianning, China – sequence: 3 surname: Liu Fanghua fullname: Liu Fanghua organization: Sch. of Electron. & Inf. Eng., Hubei Univ. of Sci. & Technol., Xianning, China – sequence: 4 surname: Wu Aixia fullname: Wu Aixia organization: Student Affairs Dept., Hubei Univ. of Sci. & Technol., Xianning, China |
BookMark | eNotj8FKxDAURSPowhn9Ad3UD2h9SZo0WQ5FncKI4LgfXtNXDXTakqYM-vUWndWFc-Fw74pd9kNPjN1xyDgH-1iV-02VCeA6K8xCCnvBVlyBBaUEV9eseH1_SKZ5pJAGmoZujn7ok5OPX0k8DUmgz7nD4H_wj48Y8EiRwnTDrlrsJro955rtn58-ym26e3upys0u9RZiagk5OJJGORQyz1vrUKJqtNNKFGSWPWIpjW5lYxoHuak1qFoLFKTyWq7Z_b_VE9FhDP6I4ftwfiJ_AWXdQqM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSAI.2016.7811079 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1509055215 9781509055210 |
EndPage | 905 |
ExternalDocumentID | 7811079 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-9ea10ce385ca2344f9ca3a5d6c6527e8079238586f3d8dc048b605b62a2e54b3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:26:59 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-9ea10ce385ca2344f9ca3a5d6c6527e8079238586f3d8dc048b605b62a2e54b3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7811079 |
PublicationCentury | 2000 |
PublicationDate | 2016-Nov. |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2016 3rd International Conference on Systems and Informatics (ICSAI) |
PublicationTitleAbbrev | ICSAI |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6139492 |
Snippet | The artifacts and noise in the recovered images by the regularization super-resolution (SR) algorithms based on sparse coding are obvious. A proposed SR... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 901 |
SubjectTerms | Dictionaries Image reconstruction Image resolution Magnetic resonance imaging MRI Prediction algorithms sparse coding Sparse matrices super-resolution Training two regularization parameterss |
Title | MR! super-resolution with two regularization parameters |
URI | https://ieeexplore.ieee.org/document/7811079 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNBI9mm24emxylWFphRaxCbyXJTkHEtmx3Efz1JrvbiuLBWwiBZJJMJpPM9w1C18oYB4mkZGB5TPiCBZ1Tlhh_fdbaJlZAcBTTBzl-4fczMWuhmx0WBgCq4DOIQrH6y89WrgxPZf2AiqSJbqO2d9xqrNYWB0N1fzKc3k5CsJaMmoY_MqZUBmO0j9JtV3WcyFtUFjZyn79YGP87lgPU-4bm4ced0TlELVh2UZI-XeFNuYaceO-52Uw4PLHi4mOF8yrffN4gLnFg-34PUTCbHpqO7p6HY9JkRCCvmhZEgxlQB0wJZ2LG-UI7w4zIpJMiTkDRQAaohJILlqnMeeW03luxMjYxCG7ZEeosV0s4RnhgNPdtHHMQCOWcof5QFCpLmLPCCn2CukHk-bqmvJg30p7-XX2G9sK01xC9c9Qp8hIuvK0u7GW1SF-myZX1 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NS8MwGA5zHvSksonfRtBjty5t2uTgQaZjdR-Im7CTI0nfiYjb6FqG_hT_in_OpO0miteBtxBCSPK-Sd4kz_MEoXMmhALfs62adInljhwz55i0hA6fOZe-pGAOip2u13xwbwd0UEAfSy4MAKTgM6iYZPqWH05UYq7KqoYVafs8h1C24G2uD2izy-BaW_OCkMZNv9608j8ErGduxxYHUbMVOIwqQRzXHXElHEFDT3mU-MBsI5_HKPNGTshCpd1Z6vheekQQoK50dK1raF1HGZRk3LAF78bm1aDeuwoMOMyr5A378UNLukE1ttDnomsZLuWlksSyot5_qT7-z75vo_I38RDfLbfUHVSAcQn5nfszPEumEFkRLKYKNhfIOJ5PcARPBkqb80mx0TJ_NRifWRn1VtDeXVQcT8awh3BNcFeXUY4CI5enhK2XfMpC31GSSsr3UckM8HCaCXoM87E9-Dv7FG00-532sB10W4do0xg8IyMeoWIcJXCso5JYnqTugdHjai3yBbwD8OM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=MR%21+super-resolution+with+two+regularization+parameters&rft.au=Ni+Hao&rft.au=Ruan+Ruolin&rft.au=Liu+Fanghua&rft.au=Wu+Aixia&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=901&rft.epage=905&rft_id=info:doi/10.1109%2FICSAI.2016.7811079&rft.externalDocID=7811079 |