GIFGIF+: Collecting emotional animated GIFs with clustered multi-task learning

Animated GIFs are widely used on the Internet to express emotions, but their automatic analysis is largely unexplored. Existing GIF datasets with emotion labels are too small for training contemporary machine learning models, so we propose a semi-automatic method to collect emotional animated GIFs f...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 510 - 517
Main Authors Chen, Weixuan, Rudovic, Ognjen Oggi, Picard, Rosalind W.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text
ISSN2156-8111
DOI10.1109/ACII.2017.8273647

Cover

Loading…
Abstract Animated GIFs are widely used on the Internet to express emotions, but their automatic analysis is largely unexplored. Existing GIF datasets with emotion labels are too small for training contemporary machine learning models, so we propose a semi-automatic method to collect emotional animated GIFs from the Internet with the least amount of human labor. The method trains weak emotion recognizers on labeled data, and uses them to sort a large quantity of unlabeled GIFs. We found that by exploiting the clustered structure of emotions, the number of GIFs a labeler needs to check can be greatly reduced. Using the proposed method, a dataset called GIFGIF+ with 23,544 GIFs over 17 emotions was created, which provides a promising platform for affective computing research.
AbstractList Animated GIFs are widely used on the Internet to express emotions, but their automatic analysis is largely unexplored. Existing GIF datasets with emotion labels are too small for training contemporary machine learning models, so we propose a semi-automatic method to collect emotional animated GIFs from the Internet with the least amount of human labor. The method trains weak emotion recognizers on labeled data, and uses them to sort a large quantity of unlabeled GIFs. We found that by exploiting the clustered structure of emotions, the number of GIFs a labeler needs to check can be greatly reduced. Using the proposed method, a dataset called GIFGIF+ with 23,544 GIFs over 17 emotions was created, which provides a promising platform for affective computing research.
Author Chen, Weixuan
Rudovic, Ognjen Oggi
Picard, Rosalind W.
Author_xml – sequence: 1
  givenname: Weixuan
  surname: Chen
  fullname: Chen, Weixuan
  email: cvx@media.mit.edu
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Ognjen Oggi
  surname: Rudovic
  fullname: Rudovic, Ognjen Oggi
  email: orudovic@media.mit.edu
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 3
  givenname: Rosalind W.
  surname: Picard
  fullname: Picard, Rosalind W.
  email: picard@media.mit.edu
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
BookMark eNotT1FLwzAYjKLgNvcDxJe8S2u-ZEkT30ZxszD0Qd_HtybVaJpKmyH-ewMODg6Ou-NuTi7iEB0hN8BKAGbu13XTlJxBVWpeCbWqzsgcpNCKSSXkOZlxkKrQAHBFltP0yRgDI5nWckaet80m4-6B1kMIrk0-vlPXD8kPEQPF6HtMztLsmeiPTx-0DccpuTFr_TEkXyScvmhwOMYcvSaXHYbJLU-8IK-bx7f6qdi9bJt6vSu8Yakw1rAOjDigls6isGhWwCrFOKK2oGWrHTfcCK4rbC1aK1WXj3UH5B0asSC3_63eObf_HvPG8Xd_Oi_-AFfET3Y
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII.2017.8273647
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538605635
9781538605639
EISSN 2156-8111
EndPage 517
ExternalDocumentID 8273647
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-9d90f193ba85eda3da94107602aa8d185c8e29293287acdadd56f364fba2fa93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9d90f193ba85eda3da94107602aa8d185c8e29293287acdadd56f364fba2fa93
PageCount 8
ParticipantIDs ieee_primary_8273647
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 1.7747151
Snippet Animated GIFs are widely used on the Internet to express emotions, but their automatic analysis is largely unexplored. Existing GIF datasets with emotion...
SourceID ieee
SourceType Publisher
StartPage 510
SubjectTerms Affective computing
Emotion recognition
Internet
Pipelines
Videos
Visualization
Title GIFGIF+: Collecting emotional animated GIFs with clustered multi-task learning
URI https://ieeexplore.ieee.org/document/8273647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0-oYHxnD950S-kDtt4MEcEEYqIm3MjsyxBMMdJe_PXOtgWi8WDSQ7Pppu1u2m8e38wHcCUIJYVA5JHuhZwscORoDXIVokCrAj-SLqM7mfZGr9HjLJ7V4GZbC2OMKchnxnOnRS5fr1TuQmUdQVjbi_p1qJPjVtZq7eIphZxpXCUuu37SuRuMx4671feqeT8EVAr8GDZhsrlzSRtZenkmPfX1qynjfx9tH9q7Sj32tMWgA6iZ9BCaG6kGVn25LZg-jId0XN-yIlKgHNmZmVLCB98ZpguyXI1mdM2audgsU--566FAYwXnkGe4XrJKY-KtDc_D-5fBiFdSCnyR-BlPdOJbMtUkithoDDUmUdfl5AJEoQmylTABGUoh-U-oNP3z4p6l97ESA4tJeASNdJWaY2CRTFw_Htd5inyLrpttQiulj8IaFcQn0HKLM_8oe2XMq3U5_Xv4DPbcBpXkuHNoZJ-5uSCQz-Rlsbvf2YWnwg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGbFsd-0XozRGQKxERMuJHXrjUEMoxsF_96221ANB5MdmiaNdvadN_re997H8AVMyjJGCL149CjxgJHilohlR4y1NJ1fGEjuoNh2Hvzn8bBuAI361wYpVROPlNN28xj-fFCZtZVdssM1oZ-ewu2De77vMjW2nhUckHToAxdthx-e9-JIsveajfLkT8kVHIE6dZgsHp2QRyZNbNUNOXXr7KM_325PWhscvXIyxqF9qGikgOorcQaSLl36zB8jLrmur4jua9AWrozUYWID84JJlNju6qYmHuWxHpniZxntoqC6ctZhzTF5YyUKhPvDXjtPow6PVqKKdApd1LKY-5oY6wJZIGK0YuR-y0blXMRWWxAWzLlGlPJMycolLH56wWhNt-jBboauXcI1WSRqCMgvuC2Io-tPWVOFy07WnlaCAeZVtINjqFuJ2fyUVTLmJTzcvJ39yXs9EaD_qQfDZ9PYdcuVkGVO4Nq-pmpcwP5qbjIV_ob2FarEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=GIFGIF%2B%3A+Collecting+emotional+animated+GIFs+with+clustered+multi-task+learning&rft.au=Chen%2C+Weixuan&rft.au=Rudovic%2C+Ognjen+Oggi&rft.au=Picard%2C+Rosalind+W.&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=510&rft.epage=517&rft_id=info:doi/10.1109%2FACII.2017.8273647&rft.externalDocID=8273647