The parallelization of convolution on a CNN using a SIMT based GPGPU
This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a large number of multiplication operations. This paper seeks to reduce the number of multiplication operations through Winograd convolution opera...
Saved in:
Published in | 2016 International SoC Design Conference (ISOCC) pp. 333 - 334 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a large number of multiplication operations. This paper seeks to reduce the number of multiplication operations through Winograd convolution operation and perform parallel processing of the convolution operation by utilizing SIMT structure of GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 7%, compared to the conventional convolution operation. |
---|---|
AbstractList | This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a large number of multiplication operations. This paper seeks to reduce the number of multiplication operations through Winograd convolution operation and perform parallel processing of the convolution operation by utilizing SIMT structure of GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 7%, compared to the conventional convolution operation. |
Author | Seonghyung Han Kwanho Lee Kwangyeob Lee Heekyeong Jeon |
Author_xml | – sequence: 1 surname: Heekyeong Jeon fullname: Heekyeong Jeon organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea – sequence: 2 surname: Kwanho Lee fullname: Kwanho Lee organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea – sequence: 3 surname: Seonghyung Han fullname: Seonghyung Han organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea – sequence: 4 surname: Kwangyeob Lee fullname: Kwangyeob Lee organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea |
BookMark | eNotj0FOwzAURI1EF7RwAdj4AgnfsePYSxQgRCptpabrynG-wZJxqqRFgtM3UruambcYzczJbewjEvLIIGUM9HO9XZdlmgGTaVForRi_IXOWgwaeMc3vyGvzjfRgBhMCBv9vjr6PtHfU9vG3D6dLjNTQcrWip9HHr8lv68-GtmbEjlabarO7JzNnwogPV12Q5v2tKT-S5bqqy5dl4jUcE92pDtscXY4ChGytM9IqAZYpo5wQmWqt1LabhklwSqLgqIAjh3yCtuAL8nSp9Yi4Pwz-xwx_--svfgbhNkZH |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISOCC.2016.7799813 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1509032193 9781509032198 |
EndPage | 334 |
ExternalDocumentID | 7799813 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-9d8deb5ef5e4046bcfa6c840c18a8f4428bc69cd21960f86e43e803e305cd2c73 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:23 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-9d8deb5ef5e4046bcfa6c840c18a8f4428bc69cd21960f86e43e803e305cd2c73 |
PageCount | 2 |
ParticipantIDs | ieee_primary_7799813 |
PublicationCentury | 2000 |
PublicationDate | 2016-Oct. |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2016 International SoC Design Conference (ISOCC) |
PublicationTitleAbbrev | ISOCC |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6524667 |
Snippet | This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 333 |
SubjectTerms | Acceleration Computers Convolution convolutional neural network gpu Instruction sets neural network Neural networks Parallel processing parallelism Signal processing algorithms |
Title | The parallelization of convolution on a CNN using a SIMT based GPGPU |
URI | https://ieeexplore.ieee.org/document/7799813 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyarmvSNDlX90PYHGyD3UabvIg4tiHtxb_el66bKB6EHh5pIU1fk8eXfN97hNwrJYx0ImSRMpYJZTlTtitZVzsODldHV9WMHI3lYC6eF_GiQR4OWhgAqMhnEHizOsu3G1P6rbJOkiA48CVqj9DYabX2OphQd4bTlzT1ZC0Z1A_-qJhSBYzeCRntu9rxRN6DssgD8_krC-N_3-WUtL-leXRyCDpnpAHrFnlEZ1OfxHu1glUtrKQbRz2lvP61KF4ZTcdj6pnur2hPh6MZ9UHM0v6kP5m3yaz3NEsHrC6PwN50WDBtlYU8BheDQJCbG5dJg3DNdFWmnEBYkRupjcUlSYZOSRAcVMgBJzg2moSfk-Z6s4YLQuMkR9hj8KaLRKKdsobbmAsTRpnkkbokLf8BlttdAoxlPfarv5uvybF3QsVp1TekWXyUcIuRu8jvKpd9AcGNmZA |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG6WedCTms342x48CmNrKeWM7ocOXDKW7LZA-2qMy2YMu_jX-wpsRuPBpIemJaHllT6-8n3vEXIrJVfCcM_pSaUdLjVzpO4KpxsaBgZ3R1PmjIwTMZzxx7k_b5C7nRYGAEryGbi2Wv7L12u1sUdlnSBAcGBT1O7hd7UUlVprq4Txws5o-hxFlq4l3PrSHzlTSpfRPyTx9mYVU-TN3RS5qz5_xWH872iOSPtbnEcnO7dzTBqwapF7NDe1YbyXS1jW0kq6NtSSyuvFRbFkNEoSarnuL1ifjuKUWjem6WAymMzaJO0_pNHQqRMkOK-hVzihlhpyH4wPHGFurkwmFAI21ZWZNByBRa5EqDRuSsIzUgBnID0G-IpjowrYCWmu1is4JdQPcgQ-CjtNjwehkVox7TOuvF4mWE-ekZZ9AIv3KgTGop77-d_NN2R_mMbjxXiUPF2QA2uQiv92SZrFxwau0I8X-XVpvi_4_pzN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+SoC+Design+Conference+%28ISOCC%29&rft.atitle=The+parallelization+of+convolution+on+a+CNN+using+a+SIMT+based+GPGPU&rft.au=Heekyeong+Jeon&rft.au=Kwanho+Lee&rft.au=Seonghyung+Han&rft.au=Kwangyeob+Lee&rft.date=2016-10-01&rft.pub=IEEE&rft.spage=333&rft.epage=334&rft_id=info:doi/10.1109%2FISOCC.2016.7799813&rft.externalDocID=7799813 |