The parallelization of convolution on a CNN using a SIMT based GPGPU

This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a large number of multiplication operations. This paper seeks to reduce the number of multiplication operations through Winograd convolution opera...

Full description

Saved in:
Bibliographic Details
Published in2016 International SoC Design Conference (ISOCC) pp. 333 - 334
Main Authors Heekyeong Jeon, Kwanho Lee, Seonghyung Han, Kwangyeob Lee
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a large number of multiplication operations. This paper seeks to reduce the number of multiplication operations through Winograd convolution operation and perform parallel processing of the convolution operation by utilizing SIMT structure of GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 7%, compared to the conventional convolution operation.
AbstractList This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a large number of multiplication operations. This paper seeks to reduce the number of multiplication operations through Winograd convolution operation and perform parallel processing of the convolution operation by utilizing SIMT structure of GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 7%, compared to the conventional convolution operation.
Author Seonghyung Han
Kwanho Lee
Kwangyeob Lee
Heekyeong Jeon
Author_xml – sequence: 1
  surname: Heekyeong Jeon
  fullname: Heekyeong Jeon
  organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea
– sequence: 2
  surname: Kwanho Lee
  fullname: Kwanho Lee
  organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea
– sequence: 3
  surname: Seonghyung Han
  fullname: Seonghyung Han
  organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea
– sequence: 4
  surname: Kwangyeob Lee
  fullname: Kwangyeob Lee
  organization: Dept. of Comput. Eng., Seokyeong Univ., Seoul, South Korea
BookMark eNotj0FOwzAURI1EF7RwAdj4AgnfsePYSxQgRCptpabrynG-wZJxqqRFgtM3UruambcYzczJbewjEvLIIGUM9HO9XZdlmgGTaVForRi_IXOWgwaeMc3vyGvzjfRgBhMCBv9vjr6PtHfU9vG3D6dLjNTQcrWip9HHr8lv68-GtmbEjlabarO7JzNnwogPV12Q5v2tKT-S5bqqy5dl4jUcE92pDtscXY4ChGytM9IqAZYpo5wQmWqt1LabhklwSqLgqIAjh3yCtuAL8nSp9Yi4Pwz-xwx_--svfgbhNkZH
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISOCC.2016.7799813
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509032193
9781509032198
EndPage 334
ExternalDocumentID 7799813
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-9d8deb5ef5e4046bcfa6c840c18a8f4428bc69cd21960f86e43e803e305cd2c73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:23 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9d8deb5ef5e4046bcfa6c840c18a8f4428bc69cd21960f86e43e803e305cd2c73
PageCount 2
ParticipantIDs ieee_primary_7799813
PublicationCentury 2000
PublicationDate 2016-Oct.
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationTitle 2016 International SoC Design Conference (ISOCC)
PublicationTitleAbbrev ISOCC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6524667
Snippet This paper proposes a method to accelerate convolutional neural network(CNN) by utilizing GPGPU. The convolutional layer of the conventional CNN required a...
SourceID ieee
SourceType Publisher
StartPage 333
SubjectTerms Acceleration
Computers
Convolution
convolutional neural network
gpu
Instruction sets
neural network
Neural networks
Parallel processing
parallelism
Signal processing algorithms
Title The parallelization of convolution on a CNN using a SIMT based GPGPU
URI https://ieeexplore.ieee.org/document/7799813
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDyarmvSNDlX90PYHGyD3UabvIg4tiHtxb_el66bKB6EHh5pIU1fk8eXfN97hNwrJYx0ImSRMpYJZTlTtitZVzsODldHV9WMHI3lYC6eF_GiQR4OWhgAqMhnEHizOsu3G1P6rbJOkiA48CVqj9DYabX2OphQd4bTlzT1ZC0Z1A_-qJhSBYzeCRntu9rxRN6DssgD8_krC-N_3-WUtL-leXRyCDpnpAHrFnlEZ1OfxHu1glUtrKQbRz2lvP61KF4ZTcdj6pnur2hPh6MZ9UHM0v6kP5m3yaz3NEsHrC6PwN50WDBtlYU8BheDQJCbG5dJg3DNdFWmnEBYkRupjcUlSYZOSRAcVMgBJzg2moSfk-Z6s4YLQuMkR9hj8KaLRKKdsobbmAsTRpnkkbokLf8BlttdAoxlPfarv5uvybF3QsVp1TekWXyUcIuRu8jvKpd9AcGNmZA
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG6WedCTms342x48CmNrKeWM7ocOXDKW7LZA-2qMy2YMu_jX-wpsRuPBpIemJaHllT6-8n3vEXIrJVfCcM_pSaUdLjVzpO4KpxsaBgZ3R1PmjIwTMZzxx7k_b5C7nRYGAEryGbi2Wv7L12u1sUdlnSBAcGBT1O7hd7UUlVprq4Txws5o-hxFlq4l3PrSHzlTSpfRPyTx9mYVU-TN3RS5qz5_xWH872iOSPtbnEcnO7dzTBqwapF7NDe1YbyXS1jW0kq6NtSSyuvFRbFkNEoSarnuL1ifjuKUWjem6WAymMzaJO0_pNHQqRMkOK-hVzihlhpyH4wPHGFurkwmFAI21ZWZNByBRa5EqDRuSsIzUgBnID0G-IpjowrYCWmu1is4JdQPcgQ-CjtNjwehkVox7TOuvF4mWE-ekZZ9AIv3KgTGop77-d_NN2R_mMbjxXiUPF2QA2uQiv92SZrFxwau0I8X-XVpvi_4_pzN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+SoC+Design+Conference+%28ISOCC%29&rft.atitle=The+parallelization+of+convolution+on+a+CNN+using+a+SIMT+based+GPGPU&rft.au=Heekyeong+Jeon&rft.au=Kwanho+Lee&rft.au=Seonghyung+Han&rft.au=Kwangyeob+Lee&rft.date=2016-10-01&rft.pub=IEEE&rft.spage=333&rft.epage=334&rft_id=info:doi/10.1109%2FISOCC.2016.7799813&rft.externalDocID=7799813