Design of a Radiation Hardened DC-DC Boost Converter
A radiation hardened monolithic DC-DC boost converter is presented in this paper. The RHBD (Radiation-Hardening by Design) techniques applied to Radiation Hardened DC-DC Boost Converter, which has been fabricated with a standard commercial 0.35-μm CMOS process. Both circuit and device-level RHBD tec...
Saved in:
Published in | 2010 2nd International Conference on Information Engineering and Computer Science pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A radiation hardened monolithic DC-DC boost converter is presented in this paper. The RHBD (Radiation-Hardening by Design) techniques applied to Radiation Hardened DC-DC Boost Converter, which has been fabricated with a standard commercial 0.35-μm CMOS process. Both circuit and device-level RHBD techniques are employed to improve the radiation tolerant abilities. All power switches, feedback control circuit, and current-sensing circuit are fabricated on-chip. Only one off-chip inductor and one off-chip capacitor are needed at the power stage, and no off-chip inductor current sensor is needed. In layout design, MOS transistors using H-GATE is to reduce the impact of TID (Total Ionizing Dose). By momentarily connecting a capacitor between the noninverting input of the error amplifier and the output of the amplifier forced the circuit to restart and allowed the circuit to continue operating to a high total dose level. The radiation experiment results show that the circuit survived 120 krad (Si) total ionizing dose (TID) with no degradation in function. |
---|---|
ISBN: | 1424479398 9781424479399 |
ISSN: | 2156-7379 |
DOI: | 10.1109/ICIECS.2010.5678208 |