Laplacian SVM for Learning from Label Proportions
Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric information has been widely ignored. Thus, current methods usually show sensitivity to noises. To address these problems, in this paper, we comb...
Saved in:
Published in | IEEE ... International Conference on Data Mining workshops pp. 847 - 852 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric information has been widely ignored. Thus, current methods usually show sensitivity to noises. To address these problems, in this paper, we combine the proportion learning framework with Laplacian term. We exploit the advantages of Laplacian term. Extensive experiments show the effectiveness of our method. |
---|---|
AbstractList | Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric information has been widely ignored. Thus, current methods usually show sensitivity to noises. To address these problems, in this paper, we combine the proportion learning framework with Laplacian term. We exploit the advantages of Laplacian term. Extensive experiments show the effectiveness of our method. |
Author | Limeng Cui Zhensong Chen Fan Meng Yong Shi |
Author_xml | – sequence: 1 surname: Limeng Cui fullname: Limeng Cui email: lmcui932@163.com – sequence: 2 surname: Zhensong Chen fullname: Zhensong Chen email: wxzmczs@163.com – sequence: 3 surname: Fan Meng fullname: Fan Meng email: im_feixie@163.com – sequence: 4 surname: Yong Shi fullname: Yong Shi email: yshi@ucas.ac.cn |
BookMark | eNotzD1PwzAQAFCDQKItnRlY8gcS7uw4zo2ofFVKBRIVjNU5sZFRakdOF_49A0xve0txEVN0QtwgVIhAd9vNw-6zkoBNBSj1mViiBgJNCPpcLKQyuiSp6Uqs5_kbAJBUTSQXAjueRu4Dx-L9Y1f4lIvOcY4hfhU-p2PRsXVj8ZbTlPIppDhfi0vP4-zW_67E_ulxv3kpu9fn7ea-KwPBqSTtjDGW6tZrh-CaAUijHCwRewRQA3vPWnqwPTIq01vZD-2gLHHNplErcfvXBufcYcrhyPnnYFrVGN2oX74LRRk |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDMW.2016.0125 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1509059105 9781509059102 |
EISSN | 2375-9259 |
EndPage | 852 |
ExternalDocumentID | 7836756 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i90t-95e777b948f5e10e6d09512db99af1003daffa52f0bc1a137cb2cd8d3b9a4a763 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:04:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-95e777b948f5e10e6d09512db99af1003daffa52f0bc1a137cb2cd8d3b9a4a763 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7836756 |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationTitle | IEEE ... International Conference on Data Mining workshops |
PublicationTitleAbbrev | ICDMW |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001934992 |
Score | 1.6289362 |
Snippet | Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 847 |
SubjectTerms | Data mining Data models Kernel Laplace equations Learning with label proportion; Proportion-SVM; Laplacian Optimization Support vector machines Training |
Title | Laplacian SVM for Learning from Label Proportions |
URI | https://ieeexplore.ieee.org/document/7836756 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFHxqOzEVaBHf8sBI0tiJ43guVAU1CIkC3So7thECtQilC78evyRtBWJgszLYSfzxzvbdPYALUShMOKADprXfoMSWBdrSJMh8OJHoPkIZqpHzu3T8mNzO-KwFlxstjLW2Ip_ZEIvVXb5ZFis8Khug4kDwtA1tv3GrtVrb8xQZe_DOGvceGsnBzfAqf0byVhr6VZj_SJ9SRY9RF_J1uzVp5C1clTosvn5ZMv73xXahv9XpkftNBNqDll3sQ3edqIE087YHdKKQe-VHAnl4yonHqaTxVX0hqC8hE6XtO1aFaBwHYh-mo-vpcBw0uRKCVxmVgeRWCKFlkjluaWRTg9CJGS2lctTPXKOcU5y5SBdU0VgUmhUmM7GWKlF-jTmAzmK5sIdAHKUm5plFyWtiaKFiJSxXzKnYgwunjqCHP2D-UbthzJtvP_778QnsYA_UBJBT6JSfK3vmw3ipz6v--wa7MJ0F |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGPxUygBTgRbxxgMjSWsnTuK5ULWQVEgU6FbZsY0QqEUoXfj1-EtCKxADW5QhLz_uYt_dB3AR5xILDiiPKeV-UALDPGVo6CUOTgSmj1CGbuRsHA0fwpspnzbgcuWFMcaU4jPj42G5l68X-RKXyrroOIh5tAGbDvc5q9xa6xUVETj6zur8HtoT3VH_KntC-Vbku3mY_yigUuLHoAXZ950r2cirvyyUn3_-CmX876PtQGft1CN3KwzahYaZ70Hru1QDqUduG2gqUX3l-gK5f8yIY6qkTlZ9JugwIalU5g0vhXwcu2IHJoPrSX_o1dUSvBfRKzzBTRzHSoSJ5Yb2TKSRPDGthJCWurGrpbWSM9tTOZU0iHPFcp3oQAkZSjfL7ENzvpibAyCWUh3wxKDpNdQ0l4GMDZfMysDRCysPoY0fYPZe5WHM6nc_-vv0OWwNJ1k6S0fj22PYxtao5CAn0Cw-lubUgXqhzsq2_AIgnKBP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Data+Mining+workshops&rft.atitle=Laplacian+SVM+for+Learning+from+Label+Proportions&rft.au=Limeng+Cui&rft.au=Zhensong+Chen&rft.au=Fan+Meng&rft.au=Yong+Shi&rft.date=2016-12-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=847&rft.epage=852&rft_id=info:doi/10.1109%2FICDMW.2016.0125&rft.externalDocID=7836756 |