Laplacian SVM for Learning from Label Proportions

Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric information has been widely ignored. Thus, current methods usually show sensitivity to noises. To address these problems, in this paper, we comb...

Full description

Saved in:
Bibliographic Details
Published inIEEE ... International Conference on Data Mining workshops pp. 847 - 852
Main Authors Limeng Cui, Zhensong Chen, Fan Meng, Yong Shi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric information has been widely ignored. Thus, current methods usually show sensitivity to noises. To address these problems, in this paper, we combine the proportion learning framework with Laplacian term. We exploit the advantages of Laplacian term. Extensive experiments show the effectiveness of our method.
AbstractList Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric information has been widely ignored. Thus, current methods usually show sensitivity to noises. To address these problems, in this paper, we combine the proportion learning framework with Laplacian term. We exploit the advantages of Laplacian term. Extensive experiments show the effectiveness of our method.
Author Limeng Cui
Zhensong Chen
Fan Meng
Yong Shi
Author_xml – sequence: 1
  surname: Limeng Cui
  fullname: Limeng Cui
  email: lmcui932@163.com
– sequence: 2
  surname: Zhensong Chen
  fullname: Zhensong Chen
  email: wxzmczs@163.com
– sequence: 3
  surname: Fan Meng
  fullname: Fan Meng
  email: im_feixie@163.com
– sequence: 4
  surname: Yong Shi
  fullname: Yong Shi
  email: yshi@ucas.ac.cn
BookMark eNotzD1PwzAQAFCDQKItnRlY8gcS7uw4zo2ofFVKBRIVjNU5sZFRakdOF_49A0xve0txEVN0QtwgVIhAd9vNw-6zkoBNBSj1mViiBgJNCPpcLKQyuiSp6Uqs5_kbAJBUTSQXAjueRu4Dx-L9Y1f4lIvOcY4hfhU-p2PRsXVj8ZbTlPIppDhfi0vP4-zW_67E_ulxv3kpu9fn7ea-KwPBqSTtjDGW6tZrh-CaAUijHCwRewRQA3vPWnqwPTIq01vZD-2gLHHNplErcfvXBufcYcrhyPnnYFrVGN2oX74LRRk
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDMW.2016.0125
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1509059105
9781509059102
EISSN 2375-9259
EndPage 852
ExternalDocumentID 7836756
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-95e777b948f5e10e6d09512db99af1003daffa52f0bc1a137cb2cd8d3b9a4a763
IEDL.DBID RIE
IngestDate Wed Aug 27 02:04:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-95e777b948f5e10e6d09512db99af1003daffa52f0bc1a137cb2cd8d3b9a4a763
PageCount 6
ParticipantIDs ieee_primary_7836756
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle IEEE ... International Conference on Data Mining workshops
PublicationTitleAbbrev ICDMW
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001934992
Score 1.6289362
Snippet Proportion-SVM has been deeply studied due to its broad application prospects, such as modeling voting behaviors and spam filtering. However, the geometric...
SourceID ieee
SourceType Publisher
StartPage 847
SubjectTerms Data mining
Data models
Kernel
Laplace equations
Learning with label proportion; Proportion-SVM; Laplacian
Optimization
Support vector machines
Training
Title Laplacian SVM for Learning from Label Proportions
URI https://ieeexplore.ieee.org/document/7836756
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFHxqOzEVaBHf8sBI0tiJ43guVAU1CIkC3So7thECtQilC78evyRtBWJgszLYSfzxzvbdPYALUShMOKADprXfoMSWBdrSJMh8OJHoPkIZqpHzu3T8mNzO-KwFlxstjLW2Ip_ZEIvVXb5ZFis8Khug4kDwtA1tv3GrtVrb8xQZe_DOGvceGsnBzfAqf0byVhr6VZj_SJ9SRY9RF_J1uzVp5C1clTosvn5ZMv73xXahv9XpkftNBNqDll3sQ3edqIE087YHdKKQe-VHAnl4yonHqaTxVX0hqC8hE6XtO1aFaBwHYh-mo-vpcBw0uRKCVxmVgeRWCKFlkjluaWRTg9CJGS2lctTPXKOcU5y5SBdU0VgUmhUmM7GWKlF-jTmAzmK5sIdAHKUm5plFyWtiaKFiJSxXzKnYgwunjqCHP2D-UbthzJtvP_778QnsYA_UBJBT6JSfK3vmw3ipz6v--wa7MJ0F
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGPxUygBTgRbxxgMjSWsnTuK5ULWQVEgU6FbZsY0QqEUoXfj1-EtCKxADW5QhLz_uYt_dB3AR5xILDiiPKeV-UALDPGVo6CUOTgSmj1CGbuRsHA0fwpspnzbgcuWFMcaU4jPj42G5l68X-RKXyrroOIh5tAGbDvc5q9xa6xUVETj6zur8HtoT3VH_KntC-Vbku3mY_yigUuLHoAXZ950r2cirvyyUn3_-CmX876PtQGft1CN3KwzahYaZ70Hru1QDqUduG2gqUX3l-gK5f8yIY6qkTlZ9JugwIalU5g0vhXwcu2IHJoPrSX_o1dUSvBfRKzzBTRzHSoSJ5Yb2TKSRPDGthJCWurGrpbWSM9tTOZU0iHPFcp3oQAkZSjfL7ENzvpibAyCWUh3wxKDpNdQ0l4GMDZfMysDRCysPoY0fYPZe5WHM6nc_-vv0OWwNJ1k6S0fj22PYxtao5CAn0Cw-lubUgXqhzsq2_AIgnKBP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Data+Mining+workshops&rft.atitle=Laplacian+SVM+for+Learning+from+Label+Proportions&rft.au=Limeng+Cui&rft.au=Zhensong+Chen&rft.au=Fan+Meng&rft.au=Yong+Shi&rft.date=2016-12-01&rft.pub=IEEE&rft.eissn=2375-9259&rft.spage=847&rft.epage=852&rft_id=info:doi/10.1109%2FICDMW.2016.0125&rft.externalDocID=7836756