Ensembles of Neural Networks for Robust Reinforcement Learning

Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their training and the validation of final policies can be cumbersome as neural networks can suffer from problems like local minima...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Machine Learning and Applications pp. 401 - 406
Main Authors Hans, A, Udluft, S
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2010
Subjects
Online AccessGet full text
ISBN1424492114
9781424492114
DOI10.1109/ICMLA.2010.66

Cover

Loading…
Abstract Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their training and the validation of final policies can be cumbersome as neural networks can suffer from problems like local minima or over fitting. When using iterative methods, such as neural fitted Q-iteration, the problem becomes even more pronounced since the network has to be trained multiple times and the training process in one iteration builds on the network trained in the previous iteration. Therefore errors can accumulate. In this paper we propose to use ensembles of networks to make the learning process more robust and produce near-optimal policies more reliably. We name various ways of combining single networks to an ensemble that results in a final ensemble policy and show the potential of the approach using a benchmark application. Our experiments indicate that majority voting is superior to Q-averaging and using heterogeneous ensembles (different network topologies) is advisable.
AbstractList Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their training and the validation of final policies can be cumbersome as neural networks can suffer from problems like local minima or over fitting. When using iterative methods, such as neural fitted Q-iteration, the problem becomes even more pronounced since the network has to be trained multiple times and the training process in one iteration builds on the network trained in the previous iteration. Therefore errors can accumulate. In this paper we propose to use ensembles of networks to make the learning process more robust and produce near-optimal policies more reliably. We name various ways of combining single networks to an ensemble that results in a final ensemble policy and show the potential of the approach using a benchmark application. Our experiments indicate that majority voting is superior to Q-averaging and using heterogeneous ensembles (different network topologies) is advisable.
Author Udluft, S
Hans, A
Author_xml – sequence: 1
  givenname: A
  surname: Hans
  fullname: Hans, A
  email: alexander.hans.ext@siemens.com
  organization: Neuroinformatics & Cognitive Robot. Lab., Ilmenau Univ. of Technol., Ilmenau, Germany
– sequence: 2
  givenname: S
  surname: Udluft
  fullname: Udluft, S
  email: steffen.udluft@siemens.com
  organization: Corp. Technol., Intell. Syst. & Control, Siemens AG, Munich, Germany
BookMark eNotjEFLwzAYQAMq6OaOnrzkD3Qm39c0zUUYZc5BVRi7j6T9ItU2laRD_PcW9F0e7_IW7DKMgRi7k2ItpTAP--ql3qxBzF0UF2whc8hzA1Lm12yV0oeYUaC1xhv2uA2JBtdT4qPnr3SOtp81fY_xM3E_Rn4Y3TlN_EBdmLOhgcLEa7IxdOH9ll152yda_XvJjk_bY_Wc1W-7fbWps86IKTNALXrthWqRPDiVoyrRelVA4VCSIGEb60rTmMbLEo1vHAFCC9ZqBMIlu__bdkR0-ordYOPPSWlRlgXiLwxjSF0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA.2010.66
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 406
ExternalDocumentID 5708863
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-92ed3f7f05d3ef2b543583af5626b31e0e0acab89c9cf1839fcbe232d2aa732e3
IEDL.DBID RIE
ISBN 1424492114
9781424492114
IngestDate Wed Aug 27 03:16:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-92ed3f7f05d3ef2b543583af5626b31e0e0acab89c9cf1839fcbe232d2aa732e3
PageCount 6
ParticipantIDs ieee_primary_5708863
PublicationCentury 2000
PublicationDate 2010-Dec.
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec.
PublicationDecade 2010
PublicationTitle 2010 International Conference on Machine Learning and Applications
PublicationTitleAbbrev ICMLA
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527773
Score 1.564164
Snippet Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems....
SourceID ieee
SourceType Publisher
StartPage 401
SubjectTerms Approximation algorithms
Artificial neural networks
ensemble methods
Function approximation
Network topology
neural fitted Q-iteration
neural networks
Neurons
reinforcement learning
robustness
Training
Title Ensembles of Neural Networks for Robust Reinforcement Learning
URI https://ieeexplore.ieee.org/document/5708863
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zJ08qm_ibHDza2TZpulwEGRtTnMiYsNtImi8izlZse_Gv92u6diIePPXHKR8lfO99fe-FkEtpOHCN-xtswJGgMOVpwwMPwbjBdjaUwhmFZ49i-szvl9GyQ65aLwwAOPEZDKpb9y_fZElZjcqQvOOeEGyH7CBxq71a7TzFj8I4jlnj3ZJIbHgT6dQ8bzM2r-9Gs4fbWtlVBST-OFnFNZbJHpk1S6r1JG-DstCD5OtXWuN_17xP-lsLH31qm9MB6UDaIzfjNId3vYacZpZWuRxqjRcnBM8pwlc6z3SZF3QOLlA1cbNDuslgfemTxWS8GE29zQEK3qv0C0-GYJiNrR8ZBjbUEUKjIVMWIY_QLAAffJUoPZSJTGyFlGyiARGWCZWKWQjskHTTLIUjQo3PJMcyAoMETIVGKRFoFgnLIyt4EByTXlX66qOOyFhtqj75-_Up2Q1bVcgZ6RafJZxjby_0hfuo36dwn9U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFLRKGWAC1CK-8cBIShw7Sb0goaqohaZCVZG6VXb8jBAlQSRZ-PU4TpMixMCUj8lPkXX3Xu7OCF1xxYBJs79BE2YaFCocqRhxDBlXBs76PLBG4WgajJ7Zw8JftNB144UBACs-g155a__lqzQuylGZad7NngjoFto2uO-Tyq3VTFRc3wvDkNbuLW5aG1aHOtXPm5TNm_EgmtxV2q4yIvHH2SoWWu73UFQvqlKUvPWKXPbir195jf9d9T7qbkx8-KmBpwPUgqSDbodJBu9yBRlONS6TOcTKXKwUPMOGwOJZKossxzOwkaqxnR7idQrrSxfN74fzwchZH6HgvHI3d7gHiupQu76ioD3pG3LUp0Ib0hNISsAFV8RC9nnMY11yJR1LMBxLeUKE1AN6iNpJmsARwsqlnJkyiDItmPCUEAGR1A8083XACDlGnbL05UcVkrFcV33y9-tLtDOaR5PlZDx9PEW7XqMROUPt_LOAc4P0ubywH_gbNOijHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Ensembles+of+Neural+Networks+for+Robust+Reinforcement+Learning&rft.au=Hans%2C+A&rft.au=Udluft%2C+S&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424492114&rft.spage=401&rft.epage=406&rft_id=info:doi/10.1109%2FICMLA.2010.66&rft.externalDocID=5708863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424492114/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424492114/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424492114/sc.gif&client=summon&freeimage=true