Ensembles of Neural Networks for Robust Reinforcement Learning
Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their training and the validation of final policies can be cumbersome as neural networks can suffer from problems like local minima...
Saved in:
Published in | 2010 International Conference on Machine Learning and Applications pp. 401 - 406 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 1424492114 9781424492114 |
DOI | 10.1109/ICMLA.2010.66 |
Cover
Loading…
Abstract | Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their training and the validation of final policies can be cumbersome as neural networks can suffer from problems like local minima or over fitting. When using iterative methods, such as neural fitted Q-iteration, the problem becomes even more pronounced since the network has to be trained multiple times and the training process in one iteration builds on the network trained in the previous iteration. Therefore errors can accumulate. In this paper we propose to use ensembles of networks to make the learning process more robust and produce near-optimal policies more reliably. We name various ways of combining single networks to an ensemble that results in a final ensemble policy and show the potential of the approach using a benchmark application. Our experiments indicate that majority voting is superior to Q-averaging and using heterogeneous ensembles (different network topologies) is advisable. |
---|---|
AbstractList | Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems. However, their training and the validation of final policies can be cumbersome as neural networks can suffer from problems like local minima or over fitting. When using iterative methods, such as neural fitted Q-iteration, the problem becomes even more pronounced since the network has to be trained multiple times and the training process in one iteration builds on the network trained in the previous iteration. Therefore errors can accumulate. In this paper we propose to use ensembles of networks to make the learning process more robust and produce near-optimal policies more reliably. We name various ways of combining single networks to an ensemble that results in a final ensemble policy and show the potential of the approach using a benchmark application. Our experiments indicate that majority voting is superior to Q-averaging and using heterogeneous ensembles (different network topologies) is advisable. |
Author | Udluft, S Hans, A |
Author_xml | – sequence: 1 givenname: A surname: Hans fullname: Hans, A email: alexander.hans.ext@siemens.com organization: Neuroinformatics & Cognitive Robot. Lab., Ilmenau Univ. of Technol., Ilmenau, Germany – sequence: 2 givenname: S surname: Udluft fullname: Udluft, S email: steffen.udluft@siemens.com organization: Corp. Technol., Intell. Syst. & Control, Siemens AG, Munich, Germany |
BookMark | eNotjEFLwzAYQAMq6OaOnrzkD3Qm39c0zUUYZc5BVRi7j6T9ItU2laRD_PcW9F0e7_IW7DKMgRi7k2ItpTAP--ql3qxBzF0UF2whc8hzA1Lm12yV0oeYUaC1xhv2uA2JBtdT4qPnr3SOtp81fY_xM3E_Rn4Y3TlN_EBdmLOhgcLEa7IxdOH9ll152yda_XvJjk_bY_Wc1W-7fbWps86IKTNALXrthWqRPDiVoyrRelVA4VCSIGEb60rTmMbLEo1vHAFCC9ZqBMIlu__bdkR0-ordYOPPSWlRlgXiLwxjSF0 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLA.2010.66 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 406 |
ExternalDocumentID | 5708863 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-92ed3f7f05d3ef2b543583af5626b31e0e0acab89c9cf1839fcbe232d2aa732e3 |
IEDL.DBID | RIE |
ISBN | 1424492114 9781424492114 |
IngestDate | Wed Aug 27 03:16:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-92ed3f7f05d3ef2b543583af5626b31e0e0acab89c9cf1839fcbe232d2aa732e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5708863 |
PublicationCentury | 2000 |
PublicationDate | 2010-Dec. |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2010 International Conference on Machine Learning and Applications |
PublicationTitleAbbrev | ICMLA |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000527773 |
Score | 1.564164 |
Snippet | Reinforcement learning algorithms that employ neural networks as function approximators have proven to be powerful tools for solving optimal control problems.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 401 |
SubjectTerms | Approximation algorithms Artificial neural networks ensemble methods Function approximation Network topology neural fitted Q-iteration neural networks Neurons reinforcement learning robustness Training |
Title | Ensembles of Neural Networks for Robust Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/5708863 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zJ08qm_ibHDza2TZpulwEGRtTnMiYsNtImi8izlZse_Gv92u6diIePPXHKR8lfO99fe-FkEtpOHCN-xtswJGgMOVpwwMPwbjBdjaUwhmFZ49i-szvl9GyQ65aLwwAOPEZDKpb9y_fZElZjcqQvOOeEGyH7CBxq71a7TzFj8I4jlnj3ZJIbHgT6dQ8bzM2r-9Gs4fbWtlVBST-OFnFNZbJHpk1S6r1JG-DstCD5OtXWuN_17xP-lsLH31qm9MB6UDaIzfjNId3vYacZpZWuRxqjRcnBM8pwlc6z3SZF3QOLlA1cbNDuslgfemTxWS8GE29zQEK3qv0C0-GYJiNrR8ZBjbUEUKjIVMWIY_QLAAffJUoPZSJTGyFlGyiARGWCZWKWQjskHTTLIUjQo3PJMcyAoMETIVGKRFoFgnLIyt4EByTXlX66qOOyFhtqj75-_Up2Q1bVcgZ6RafJZxjby_0hfuo36dwn9U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwFLRKGWAC1CK-8cBIShw7Sb0goaqohaZCVZG6VXb8jBAlQSRZ-PU4TpMixMCUj8lPkXX3Xu7OCF1xxYBJs79BE2YaFCocqRhxDBlXBs76PLBG4WgajJ7Zw8JftNB144UBACs-g155a__lqzQuylGZad7NngjoFto2uO-Tyq3VTFRc3wvDkNbuLW5aG1aHOtXPm5TNm_EgmtxV2q4yIvHH2SoWWu73UFQvqlKUvPWKXPbir195jf9d9T7qbkx8-KmBpwPUgqSDbodJBu9yBRlONS6TOcTKXKwUPMOGwOJZKossxzOwkaqxnR7idQrrSxfN74fzwchZH6HgvHI3d7gHiupQu76ioD3pG3LUp0Ib0hNISsAFV8RC9nnMY11yJR1LMBxLeUKE1AN6iNpJmsARwsqlnJkyiDItmPCUEAGR1A8083XACDlGnbL05UcVkrFcV33y9-tLtDOaR5PlZDx9PEW7XqMROUPt_LOAc4P0ubywH_gbNOijHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Applications&rft.atitle=Ensembles+of+Neural+Networks+for+Robust+Reinforcement+Learning&rft.au=Hans%2C+A&rft.au=Udluft%2C+S&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424492114&rft.spage=401&rft.epage=406&rft_id=info:doi/10.1109%2FICMLA.2010.66&rft.externalDocID=5708863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424492114/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424492114/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424492114/sc.gif&client=summon&freeimage=true |