An optimized fault diagnosis method for reciprocating air compressors based on SVM

Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support Vector Machines (SVMs) are machine learning tools based on structural risk minimization principle and have the advantageous characteristic of good...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE International Conference on System Engineering and Technology pp. 65 - 69
Main Authors Verma, N. K., Roy, A., Salour, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2011
Subjects
Online AccessGet full text
ISBN9781457712562
1457712563
DOI10.1109/ICSEngT.2011.5993422

Cover

Abstract Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support Vector Machines (SVMs) are machine learning tools based on structural risk minimization principle and have the advantageous characteristic of good generalization. For this reason, four well-known and widely used SVM based methods, one-against-one (OAO), oneagainst-all (OAA), fuzzy decision function (FDF), and DDAG have been used here and an optimized SVM based technique is proposed for classification based fault diagnosis in reciprocating air compressors. The results obtained through implementation of all five techniques are thus compared as per their accuracy rate in percentages and the performance of the proposed method with 98.03 percent accuracy rate was found to be better than all other classification methods. With the compressor datasets being complex natured, proposed method is found to be of vital importance for classification based fault diagnosis pertaining to reciprocating air compressors.
AbstractList Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support Vector Machines (SVMs) are machine learning tools based on structural risk minimization principle and have the advantageous characteristic of good generalization. For this reason, four well-known and widely used SVM based methods, one-against-one (OAO), oneagainst-all (OAA), fuzzy decision function (FDF), and DDAG have been used here and an optimized SVM based technique is proposed for classification based fault diagnosis in reciprocating air compressors. The results obtained through implementation of all five techniques are thus compared as per their accuracy rate in percentages and the performance of the proposed method with 98.03 percent accuracy rate was found to be better than all other classification methods. With the compressor datasets being complex natured, proposed method is found to be of vital importance for classification based fault diagnosis pertaining to reciprocating air compressors.
Author Salour, A.
Verma, N. K.
Roy, A.
Author_xml – sequence: 1
  givenname: N. K.
  surname: Verma
  fullname: Verma, N. K.
  email: nishchal@iitk.ac.in
  organization: Dept. of Electr. Eng., Indian Inst. of Technol. (IIT) Kanpur, Kanpur, India
– sequence: 2
  givenname: A.
  surname: Roy
  fullname: Roy, A.
  email: abhishekroyn@gmail.com
  organization: Dept. of Electr. & Electron. Eng., Nat. Inst. of Technol. Karnataka, Mangalore, India
– sequence: 3
  givenname: A.
  surname: Salour
  fullname: Salour, A.
  email: al.salour@boeing.com
  organization: Boeing Co., St. Louis, MO, USA
BookMark eNpVUMFKxDAUjKigrv0CPeQHWpM0SZvjUlZdWBHc4nV5bV9rZJuUpB706y24F-cyzMAMzNyQC-cdEnLPWcY5Mw_bar9xQ50JxnmmjMmlEGckMUXJpSoKLpRS5_-0FlckifGTLdDaaFFck7e1o36a7Wh_sKM9fB1n2lkYnI820hHnD7_YPtCArZ2Cb2G2bqBgA239OAWM0YdIG4hL3Du6f3-5JZc9HCMmJ16R-nFTV8_p7vVpW613qTVsTo0AjbnhvYQSygUdMNMoZEXLodDGtLzrkGOppJayXUY2eYm8bFSjlAGZr8jdX61FxMMU7Ajh-3A6Iv8FDNBUNQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSEngT.2011.5993422
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457712555
1457712547
9781457712548
1457712555
EndPage 69
ExternalDocumentID 5993422
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-92a6e391f4a8a8888da09b5e07c1a7699c1dde1e854644c011b38e18b5b559a43
IEDL.DBID RIE
ISBN 9781457712562
1457712563
IngestDate Wed Aug 27 03:26:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-92a6e391f4a8a8888da09b5e07c1a7699c1dde1e854644c011b38e18b5b559a43
PageCount 5
ParticipantIDs ieee_primary_5993422
PublicationCentury 2000
PublicationDate 2011-June
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-June
PublicationDecade 2010
PublicationTitle 2011 IEEE International Conference on System Engineering and Technology
PublicationTitleAbbrev ICSEngT
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669627
Score 1.5276437
Snippet Fault diagnosis in reciprocating air compressors is essential for continuous monitoring of their performance and thereby ensuring quality output. Support...
SourceID ieee
SourceType Publisher
StartPage 65
SubjectTerms Accuracy
Compressors
Conferences
Fault diagnosis
fuzzy decision function
Kernel
reciprocating air compressor
support vector machine
Support vector machines
Training
Title An optimized fault diagnosis method for reciprocating air compressors based on SVM
URI https://ieeexplore.ieee.org/document/5993422
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4ykjR3n4RFVrQpSEKIFdav8CoqABLXJ0l_POU6LQAxsSQbLOlv33V2-7w6hayYSQA4SeQBukKDI0Pc4E8TTNNZBogyV1IqT04do-szuF-Gig252WhhjTEM-MwP72PzL16WqbalsGAKYMgoOdw-umdNq7eopAJ12jkyj3QrjGHA7CrYtndp32krniM-Hd6PZuHidux6e7bo_Bqw0-DI5QOl2Z45W8jaoKzlQm19NG_-79UPU_1by4ccdRh2hjil66Om2wCW4io98YzTORP1eYe0od_kau5nSGIJZbDtfWIQTlhuNRb7CloFuE_RytcYWADUuCzx7SftoPhnPR1Ovna3g5dyvPE5FZAJOMjgrAUlwooXPZWj8WBERR5wrAn6PmCRkEDApMJIMEkMSGUpIQQQLjlG3KAtzgnBkbAxDZaB4xLRQiSSWihLAgjTLfHaKetYcy0_XPWPZWuLs78_naN9VbW2d4wJ1q1VtLgH2K3nVnPcXCdapDg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUqGGAC1CK-8cBI2thxPjyiqlULTYVoQN0qO3ZQBCSoTZb-es5JWgRiYHM8WNZZund3ee8OoRsmAkAO4lkAbpCgSNe2OBPEUtRXThBrKqkRJ4dTb_TM7ufuvIVut1oYrXVFPtNds6z-5as8Lk2prOcCmDIKDncXcJ-5tVprW1EB8DSTZCr1luv7gNyes2nq1HzTRjxHbN4b92eD7DWqu3g2J_8YsVIhzPAAhZu71cSSt25ZyG68_tW28b-XP0Sdby0fftyi1BFq6ayNnu4ynIOz-EjXWuFElO8FVjXpLl3heqo0hnAWm94XBuOEYUdjkS6x4aCbFD1frrCBQIXzDM9ewg6KhoOoP7Ka6QpWyu3C4lR42uEkgdcSkAYHSthcutr2YyJ8j_OYgOcjOnAZhEwxGEk6gSaBdCUkIYI5x2gnyzN9grCnTRRDpRNzjykRB5IYMooDB9IksdkpahtzLD7r_hmLxhJnf29fo71RFE4Wk_H04Rzt1zVcU_W4QDvFstSXEAQU8qp6-y8XYKxb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+System+Engineering+and+Technology&rft.atitle=An+optimized+fault+diagnosis+method+for+reciprocating+air+compressors+based+on+SVM&rft.au=Verma%2C+N.+K.&rft.au=Roy%2C+A.&rft.au=Salour%2C+A.&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781457712562&rft.spage=65&rft.epage=69&rft_id=info:doi/10.1109%2FICSEngT.2011.5993422&rft.externalDocID=5993422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457712562/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457712562/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457712562/sc.gif&client=summon&freeimage=true