SBC: A New Strategy for Multiclass Lung Cancer Classification Based on Tumour Structural Information and Microarray Data

Lung cancer has different subtypes which are different in cell size and growth pattern. Correctly classifying subtypes of lung cancer can help design specific treatments to increase patient survival rate. In this work, we propose an innovative Structural Binary Classification (SBC) strategy for clas...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS) pp. 68 - 73
Main Authors Azzawi, Hasseeb, Hou, Jingyu, Alnnni, Russul, Xiang, Yong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
DOI10.1109/ICIS.2018.8466448

Cover

Abstract Lung cancer has different subtypes which are different in cell size and growth pattern. Correctly classifying subtypes of lung cancer can help design specific treatments to increase patient survival rate. In this work, we propose an innovative Structural Binary Classification (SBC) strategy for classifying lung cancer subtypes using microarray data. The strategy is based on Gene Expression Programming (GEP) algorithm. Classification performance evaluations and comparisons between our GEP based model and common binary decomposition strategies, as well as three representative machine learning methods, support vector machine, neural network and C4.5, were conducted thoroughly on real microarray lung cancer datasets. Reliability was assessed by the cross-data set validation. The experimental results showed that GEP model with our strategy outperformed other models in terms of accuracy, standard deviation and area under the receiver operating characteristic curve. The work provides a useful tool for lung cancer classification based on tumour structural information.
AbstractList Lung cancer has different subtypes which are different in cell size and growth pattern. Correctly classifying subtypes of lung cancer can help design specific treatments to increase patient survival rate. In this work, we propose an innovative Structural Binary Classification (SBC) strategy for classifying lung cancer subtypes using microarray data. The strategy is based on Gene Expression Programming (GEP) algorithm. Classification performance evaluations and comparisons between our GEP based model and common binary decomposition strategies, as well as three representative machine learning methods, support vector machine, neural network and C4.5, were conducted thoroughly on real microarray lung cancer datasets. Reliability was assessed by the cross-data set validation. The experimental results showed that GEP model with our strategy outperformed other models in terms of accuracy, standard deviation and area under the receiver operating characteristic curve. The work provides a useful tool for lung cancer classification based on tumour structural information.
Author Hou, Jingyu
Azzawi, Hasseeb
Alnnni, Russul
Xiang, Yong
Author_xml – sequence: 1
  givenname: Hasseeb
  surname: Azzawi
  fullname: Azzawi, Hasseeb
  organization: School of Information Technology, Deakin University, Victoria, Australia
– sequence: 2
  givenname: Jingyu
  surname: Hou
  fullname: Hou, Jingyu
  organization: School of Information Technology, Deakin University, Victoria, Australia
– sequence: 3
  givenname: Russul
  surname: Alnnni
  fullname: Alnnni, Russul
  organization: School of Information Technology, Deakin University, Victoria, Australia
– sequence: 4
  givenname: Yong
  surname: Xiang
  fullname: Xiang, Yong
  organization: School of Information Technology, Deakin University, Victoria, Australia
BookMark eNotkMtOAjEYhWuiiYI8gHHTFwB7md7cwXibBHQBe_JP2yE1Q8d0OlHeXgiszsnJl29xRug6dtEj9EDJjFJinqqyWs8YoXqmCymLQl-hERVcS6ENE7do0vffhBAmdWEov0N_60X5jOf40__idU6Q_e6Amy7h1dDmYFvoe7wc4g6XEK1PuDwtoQkWcugiXkDvHT6WzbDvhnRSDDYPCVpcxaNmf8YgOrwKNnWQEhzwC2S4RzcNtL2fXHKMNm-vm_Jjuvx6r8r5choMyVNDrfUgaCEKS8BpwZRvGseUFLUQtXK6MdYIzpxUiglKjRKU1co47nmtJR-jx7M2eO-3PynsIR22l2_4P58qXJA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIS.2018.8466448
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538658925
9781538658925
EndPage 73
ExternalDocumentID 8466448
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-91ccea51454c0ad8527effd2765b55b7d8f9c9532d677251197512b79d3e3b863
IEDL.DBID RIE
IngestDate Wed Aug 27 02:53:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-91ccea51454c0ad8527effd2765b55b7d8f9c9532d677251197512b79d3e3b863
PageCount 6
ParticipantIDs ieee_primary_8466448
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS)
PublicationTitleAbbrev ICIS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684913
Score 1.7183244
Snippet Lung cancer has different subtypes which are different in cell size and growth pattern. Correctly classifying subtypes of lung cancer can help design specific...
SourceID ieee
SourceType Publisher
StartPage 68
SubjectTerms Biological cells
Cancer
Classification algorithms
Gene expression
gene expression analysis
gene expression programming
Lung
lung cancer diagnosis
Multiclass classification
Programming
Tumors
Title SBC: A New Strategy for Multiclass Lung Cancer Classification Based on Tumour Structural Information and Microarray Data
URI https://ieeexplore.ieee.org/document/8466448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjyptOKbOXg0aV6bbLzZaGnFitAKvZV9goitlASsv97ZTawoHiSXJeSx2dnsfLvzzbeEXIQmidAtci-QicAJijaeCFTopczkeBgaSqf2-ZCOnpK7OZ23yOU2F0Zr7chn2rdFF8tXK1nZpbI-s1roCWuTNnazOldru55iVUvyMG4Cl2GQ98fFeGq5W8xv7vuxgYrzH8NdMvl6c00befGrUvjy45co43-rtkd635l68Lj1QfukpZdd8j4dFFdwDTiAQaM-uwEEp-CybaXFy3CPPzkU1uRrcBtjWsqQsxIM0LEpwMKsesWeZh9RSSfPAU3ykruMLxVMLJ2Pr9d8Aze85D0yG97OipHX7LDgPedBiQOdlJojZKKJDLhiNMq0MSrKUiooFZlCg8mcxpFKEYS7iCPiA5HlKtaxYGl8QDrL1VIfEgh5nEuT4HxDW8lBxgXNhBAyMZHFIOyIdG2jLd5qDY1F017Hf58-ITvWcDUl65R08Dv1GTr_Upw7q38CIdmwRQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zPuiTyibezYOPtustbeqbq45NtyGsgm8jVxCxk9GC89d7ktaJ4oP0JZRe0pw050vOd74gdOHrKAC3yBxPRBwmKEo73JO-E1OdwqGJL6za5zQePkZ3T-SphS7XuTBKKUs-U64p2li-XIjKLJX1qNFCj-gG2gS_H5E6W2u9omJ0S1I_bEKXvpf2RtloZthb1G3u_LGFivUggx00-Xp3TRx5cauSu-Ljlyzjfyu3i7rfuXr4Ye2F9lBLFR30PutnV_gawxCGG_3ZFQZ4im2-rTCIGY_hN8eZMfoS260xDWnI2gn3wbVJDIW8eoW-Zh5RCSvQgZv0JXsZKySeGEIfWy7ZCt-wknVRPrjNs6HT7LHgPKdeCUOdEIoBaCKR8JikJEiU1jJIYsIJ4YkEk4mUhIGMAYbbmCMgBJ6kMlQhp3G4j9rFolAHCPssTIWOYMahjOggZZwknHMR6cCgEHqIOqbR5m-1isa8aa-jv0-fo61hPhnPx6Pp_THaNkasCVonqA3frE4BCpT8zPaAT4mps5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+ACIS+17th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=SBC%3A+A+New+Strategy+for+Multiclass+Lung+Cancer+Classification+Based+on+Tumour+Structural+Information+and+Microarray+Data&rft.au=Azzawi%2C+Hasseeb&rft.au=Hou%2C+Jingyu&rft.au=Alnnni%2C+Russul&rft.au=Xiang%2C+Yong&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=68&rft.epage=73&rft_id=info:doi/10.1109%2FICIS.2018.8466448&rft.externalDocID=8466448