Finite-time stabilization for stochastic delayed recurrent neural networks via nonlinear delay-feedback controller

In this paper, stochastic finite-time stability analysis and stabilization problems for stochastic delayed recurrent neural networks(SDRNNs) are investigated, and the stochastic settling time function is also estimated. The sufficient condition of stochastic finite-time stable(SFTS) for SDRNNs is pr...

Full description

Saved in:
Bibliographic Details
Published in2017 Chinese Automation Congress (CAC) pp. 1411 - 1416
Main Authors Chen, Guici, Wang, Huafeng, Yang, Yali
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text
DOI10.1109/CAC.2017.8242988

Cover

Abstract In this paper, stochastic finite-time stability analysis and stabilization problems for stochastic delayed recurrent neural networks(SDRNNs) are investigated, and the stochastic settling time function is also estimated. The sufficient condition of stochastic finite-time stable(SFTS) for SDRNNs is proposed at first. Then the nonlinear delay-feedback controller to stochastic finite-time stabilize the SDRNNs is designed. Finally, an numerical example is given to show the corrections of the proposed results and the effectiveness of the provided controller.
AbstractList In this paper, stochastic finite-time stability analysis and stabilization problems for stochastic delayed recurrent neural networks(SDRNNs) are investigated, and the stochastic settling time function is also estimated. The sufficient condition of stochastic finite-time stable(SFTS) for SDRNNs is proposed at first. Then the nonlinear delay-feedback controller to stochastic finite-time stabilize the SDRNNs is designed. Finally, an numerical example is given to show the corrections of the proposed results and the effectiveness of the provided controller.
Author Chen, Guici
Yang, Yali
Wang, Huafeng
Author_xml – sequence: 1
  givenname: Guici
  surname: Chen
  fullname: Chen, Guici
  email: gcichen@163.com
  organization: College of Sciences, Wuhan University of Sci. & Tech., Wuhan, P. R. China, Department of Mathematics, University of Kansas, Lawrence, KS, United States
– sequence: 2
  givenname: Huafeng
  surname: Wang
  fullname: Wang, Huafeng
  email: 949844566@qq.com
  organization: College of Sciences, Wuhan University of Sci. & Tech., Wuhan, P. R. China
– sequence: 3
  givenname: Yali
  surname: Yang
  fullname: Yang, Yali
  email: 867978076@qq.com
  organization: College of Sciences, Wuhan University of Sci. & Tech., Wuhan, P. R. China
BookMark eNotkE1LAzEYhCPowVbvgpf8ga352Owmx7JYFQpeei9vkncxNE0kmyr117vQnh4YhhlmFuQ25YSEPHG24pyZl2E9rATj_UqLVhitb8iCK6k7qUTL7knZhBQqNjUckU4VbIjhD2rIiY65zEp2XzDV4KjHCGf0tKA7lYKp0oSnAnFG_c3lMNGfAHRujyEhlIu_GRG9BXegLqdacoxYHsjdCHHCxyuXZLd53Q3vzfbz7WNYb5tgWG0Md4JzCV71TEurrAfUTLVS9lw7MU-xzqMfu7FTlhvfg9dCemuY8hZ9L5fk-RIbEHH_XcIRynl_fUH-A9ziWeo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAC.2017.8242988
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538635240
9781538635247
EndPage 1416
ExternalDocumentID 8242988
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-91c2113ad57083b5bdae805433718c2298bcdedf6f65b19d7ad823db905dbed73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:06 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-91c2113ad57083b5bdae805433718c2298bcdedf6f65b19d7ad823db905dbed73
PageCount 6
ParticipantIDs ieee_primary_8242988
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle 2017 Chinese Automation Congress (CAC)
PublicationTitleAbbrev CAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6575743
Snippet In this paper, stochastic finite-time stability analysis and stabilization problems for stochastic delayed recurrent neural networks(SDRNNs) are investigated,...
SourceID ieee
SourceType Publisher
StartPage 1411
SubjectTerms Automation
delay-feedback controller
finite-time
Recurrent neural networks
Stability analysis
stabilization
stochastic neural networks
Sufficient conditions
Title Finite-time stabilization for stochastic delayed recurrent neural networks via nonlinear delay-feedback controller
URI https://ieeexplore.ieee.org/document/8242988
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdrNZ2-QowzGEiYcJu438eMWxsUntBvrX-5J0E8WDp5YQ-tqk5H15-d73AG4I0ROyRxmlPlplTBKpTPGIVsK-TIQpgpbe-CkbvfQfp-m0Abf7XBhE9OQzjN2tP8u3a7NxobKuIH8ihWhCk36zkKu1O3nsye7gfuCoWnlcd_tRL8W7i-EhjHeGAktkEW8qHZvPXxqM_32TI-h8J-ax573LOYYGrtpQDucOOEauTDwjsOforiG5khEipZa1eVVOjpk5RcgPtKx0QXYny8ScnKVa0sWTwd_Zdq7YKqhnqDL0jwqyppVZsJrWvsSyA5Phw2QwiupSCtFc9ipa0Qxt9LiyaU6QS6faKhQE1jgn12QS-hRtLNoiK7JU30mbKysSbrXspVajzfkJtMg4ngIrHC_KcKMtYj-ztDGnRyvUufDQwZxB2w3X7C2IZczqkTr_u_kCDtyUBXbcJbSqcoNX5OUrfe2n9wuA_K1c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSkBoxve_DoLrjP9miIBBWIB0y4kT5mI4GAWRcT_fVOtwtG48HTbppmZ9smna_Tb74BuCJET8gehReX0SqtA08mMvRoJ4xEwHXmtPQGw6T3HD2M43ENrje5MIhYks_Qt6_lXb5Z6pUNlbU4-RPB-RZsk9-PYpettb57bItW57ZjyVqpX3X8UTGldBjdPRisTTmeyMxfFcrXn79UGP_7L_vQ_E7NY08bp3MANVw0IO9OLXT0bKF4RnDPEl5deiUjTEotS_0irSAzs5qQH2hYbsPsVpiJWUFLOadHSQd_Y-9TyRZOP0Pmrr-XkTUl9YxVxPY55k0Yde9GnZ5XFVPwpqJd0J6m6agXShOnBLpUrIxETnAtDMk56YCGorRBkyVZEqsbYVJpeBAaJdqxUWjS8BDqZByPgGWWGaVDrQxilBg6mtOnJaqUl-BBH0PDTtfk1cllTKqZOvm7-RJ2eqNBf9K_Hz6ewq5dPseVO4N6ka_wnHx-oS7Kpf4CuyGwqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Chinese+Automation+Congress+%28CAC%29&rft.atitle=Finite-time+stabilization+for+stochastic+delayed+recurrent+neural+networks+via+nonlinear+delay-feedback+controller&rft.au=Chen%2C+Guici&rft.au=Wang%2C+Huafeng&rft.au=Yang%2C+Yali&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=1411&rft.epage=1416&rft_id=info:doi/10.1109%2FCAC.2017.8242988&rft.externalDocID=8242988