Detection of Food Intake Events From Throat Microphone Recordings Using Convolutional Neural Networks

Food intake analysis is a crucial step to develop an automated dietary monitoring system. Processing of eating sounds deliver important cues for the food intake monitoring. Recent studies on detection of eating activity generally utilize multimodal data from multiple sensors with conventional featur...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) pp. 1 - 6
Main Authors Tugtekin Turan, M.A., Erzin, Engin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2018
Subjects
Online AccessGet full text
DOI10.1109/ICMEW.2018.8551492

Cover

Loading…
Abstract Food intake analysis is a crucial step to develop an automated dietary monitoring system. Processing of eating sounds deliver important cues for the food intake monitoring. Recent studies on detection of eating activity generally utilize multimodal data from multiple sensors with conventional feature engineering techniques. In this study, we target to develop a methodology for detection of ingestion sounds, namely swallowing and chewing, from the recorded food intake sounds during a meal. Our methodology relies on feature learning in the frequency domain using a convolutional neural network (CNN). Spectrograms extracted from the recorded food intake sounds through a laryngeal throat microphone are fed in to the CNN architecture. Experimental evaluations are performed on our in-house food intake dataset, which includes 8 subject, 10 different food types covering 276 minutes of recordings. The proposed system attains high detection rates of the swallow and chew events with high sensitivity and specificity, and delivers a potential for food intake monitoring under daily life conditions in future studies.
AbstractList Food intake analysis is a crucial step to develop an automated dietary monitoring system. Processing of eating sounds deliver important cues for the food intake monitoring. Recent studies on detection of eating activity generally utilize multimodal data from multiple sensors with conventional feature engineering techniques. In this study, we target to develop a methodology for detection of ingestion sounds, namely swallowing and chewing, from the recorded food intake sounds during a meal. Our methodology relies on feature learning in the frequency domain using a convolutional neural network (CNN). Spectrograms extracted from the recorded food intake sounds through a laryngeal throat microphone are fed in to the CNN architecture. Experimental evaluations are performed on our in-house food intake dataset, which includes 8 subject, 10 different food types covering 276 minutes of recordings. The proposed system attains high detection rates of the swallow and chew events with high sensitivity and specificity, and delivers a potential for food intake monitoring under daily life conditions in future studies.
Author Erzin, Engin
Tugtekin Turan, M.A.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Tugtekin Turan
  fullname: Tugtekin Turan, M.A.
  organization: Multimedia, Vision and Graphics Laboratory, College of Engineering, Koç University, Istanbul, Turkey
– sequence: 2
  givenname: Engin
  surname: Erzin
  fullname: Erzin, Engin
  organization: Multimedia, Vision and Graphics Laboratory, College of Engineering, Koç University, Istanbul, Turkey
BookMark eNotz7FOwzAUhWEjwQClLwCLXyDB14kde0QhhUgtSFDEWDnJNY2a2pXjFvH2FOj0bf_RuSLnzjsk5AZYCsD0XV0uqo-UM1CpEgJyzc_IVBcKRKZkDlqoS4IPGLGNvXfUWzrzvqO1i2aDtDqgiyOdBb-ly3XwJtJF3wa_Wx9X6Cu2PnS9-xzp-3iElt4d_LD_LZmBPuM-_BG_fNiM1-TCmmHE6ckJeZtVy_Ipmb881uX9POk1i4lmDRdcam47KKyynNsMsNGqAc1RokClrDSskRlqCRmTvC2KHBAlyJZlE3L7X-0RcbUL_daE79XpevYDn_xTrQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMEW.2018.8551492
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538641958
153864195X
EndPage 6
ExternalDocumentID 8551492
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-90b252692fd17f8f22f31eb98b192e6e5e88f6a0b63e9613062c7741ee616c03
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-90b252692fd17f8f22f31eb98b192e6e5e88f6a0b63e9613062c7741ee616c03
PageCount 6
ParticipantIDs ieee_primary_8551492
PublicationCentury 2000
PublicationDate 2018-July
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)
PublicationTitleAbbrev ICMEW
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7433425
Snippet Food intake analysis is a crucial step to develop an automated dietary monitoring system. Processing of eating sounds deliver important cues for the food...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms convolutional neural network
dietary monitoring
food intake detection
throat microphone
wearable sensors
Title Detection of Food Intake Events From Throat Microphone Recordings Using Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/8551492
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8MgFMDJ3MmTms34HQ4epWuho3CeazaTGRNn3G2B9jWaabtszIN_vUC7GY0HTxBCAgHCew9-7z2EriWHSHMak0zKgsQ8FETJRJHYGm5xwhJb-mif93z0FN_N-rMWutn5wgCAh88gcFX_l59X2cY9lfWEE-_SXrh71nCrfbW2fjCh7I0Hk-Gzg7VE0HT8kTHFC4z0AE22Q9WcyCLYGB1kn7-iMP53Loeo--2ahx92QucItaDsILgF45GqElcFTqsqx-PSqAXgocMZ1zhdVe94-rKqlMETh-A5Ih1wbXu6t3Ls0QFsB_lozqJ6wy5why88Kb7uosd0OB2MSJM_gbzK0BAZauryh9Mij5JCFJQWLAIthbZaHXDogxAFV6HmDKQzIzjNrDIYAfCIZyE7Ru3SzuUEYRYzpSkVUZQlsQQmc6tGMC6UtNqgZv1T1HELNF_WATLmzdqc_d18jvbdJtXM6wVqm9UGLq1kN_rKb-kXAVulcg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDmAc9qTjxtzl4tF3TtGlyniubrkNw4m4jaV9Rpq1snQf_epO0mygePCWUQkJS8n0v_bz3ELoSDIhifuCkQuROwDzuSBFJJ9COWxDRSLc22-eYDR6D22k4baHrTSwMAFj4DFzTtf_yszJdmauyLjfyLvSBu6V1PyR1tNY6EsYT3WEv6T8ZXIu7zas_aqZYyYh3UbIerCZF5u6qUm76-SsP439ns4c638F5-H4jO_uoBcUBghuoLFRV4DLHcVlmeFhUcg64b4DGJY4X5RuePC9KWeHEQHiGSQdce5_mthxbeADrQT6ar1G-YpO6wzaWFV920EPcn_QGTlNBwXkRXuUIT_mmgrifZyTKee77OSWgBFfargMGIXCeM-kpRkEYR4L5qTYHCQAjLPXoIWoXei5HCNOASuX7nJA0CgRQkWlDgjIuhbYHFQ2P0YFZoNl7nSJj1qzNyd-PL9H2YJKMZqPh-O4U7ZgNqwnYM9SuFis41zpfqQu7vV_RBKi7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Multimedia+%26+Expo+Workshops+%28ICMEW%29&rft.atitle=Detection+of+Food+Intake+Events+From+Throat+Microphone+Recordings+Using+Convolutional+Neural+Networks&rft.au=Tugtekin+Turan%2C+M.A.&rft.au=Erzin%2C+Engin&rft.date=2018-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICMEW.2018.8551492&rft.externalDocID=8551492