Estimation of radial distortion using local spectra of planar textures
A novel self-calibration method for estimation of radial lens distortion is proposed. It requires only a single image of a textured plane that may have arbitrary orientation with respect to the camera. A frequency-based approach is used to estimate the perspective and non-linear lens distortions tha...
Saved in:
Published in | 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA) pp. 472 - 477 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
MVA Organization
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel self-calibration method for estimation of radial lens distortion is proposed. It requires only a single image of a textured plane that may have arbitrary orientation with respect to the camera. A frequency-based approach is used to estimate the perspective and non-linear lens distortions that planar textures are subject to when projected to a camera image plane. The texture is only required to be homogeneous and may exhibit a high amount of stochastic content. For this purpose, we derive the relationship between the local spatial frequencies of the texture and those of the image. In a joint optimization, both the rotation matrix and the radial distortion are subsequently estimated. Results show that with appropriate textures, a mean reprojection error of 9.76 · 10 -5 relative to the picture width is achieved. In addition, the method is robust to image corruption by noise. |
---|---|
AbstractList | A novel self-calibration method for estimation of radial lens distortion is proposed. It requires only a single image of a textured plane that may have arbitrary orientation with respect to the camera. A frequency-based approach is used to estimate the perspective and non-linear lens distortions that planar textures are subject to when projected to a camera image plane. The texture is only required to be homogeneous and may exhibit a high amount of stochastic content. For this purpose, we derive the relationship between the local spatial frequencies of the texture and those of the image. In a joint optimization, both the rotation matrix and the radial distortion are subsequently estimated. Results show that with appropriate textures, a mean reprojection error of 9.76 · 10 -5 relative to the picture width is achieved. In addition, the method is robust to image corruption by noise. |
Author | Spitschan, Benjamin Ostermann, Jorn |
Author_xml | – sequence: 1 givenname: Benjamin surname: Spitschan fullname: Spitschan, Benjamin email: spitschan@tnt.uni-hannover.de organization: Inst. fur Informationsverarbeitung, Leibniz Univ. Hannover, Hannover, Germany – sequence: 2 givenname: Jorn surname: Ostermann fullname: Ostermann, Jorn organization: Inst. fur Informationsverarbeitung, Leibniz Univ. Hannover, Hannover, Germany |
BookMark | eNotj8tKAzEYhSPoQmsfQNzMC8yY-2VZSquFigvFbfkn-SOBcWZIUtC3t2pXBz4OH-fckMtxGpGQO0Y7LhxzD8_vq45TZjrjrHZUXJClM1Y6yhjnTNNrst2Umj6hpmlspthkCAmGJqRSp_wHjyWNH80w-RMuM_qa4bc4DzBCbip-1WPGckuuIgwFl-dckNft5m391O5fHnfr1b5NjtbWURV6gVZ7yRG4DYoJy6WyiFaEoMBK7yLnhhrU0ateq8ghgpCe9VSLBbn_tyZEPMz5NDx_H87fxA-2CUkA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/MVA.2017.7986903 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9784901122160 4901122169 |
EndPage | 477 |
ExternalDocumentID | 7986903 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-905db3e86c42ea28d51382458ee83dd5a84c9f22707e6fc5b65f2afa34c1b063 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:08 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-905db3e86c42ea28d51382458ee83dd5a84c9f22707e6fc5b65f2afa34c1b063 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7986903 |
PublicationCentury | 2000 |
PublicationDate | 2017-May |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
PublicationDecade | 2010 |
PublicationTitle | 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA) |
PublicationTitleAbbrev | MVA |
PublicationYear | 2017 |
Publisher | MVA Organization |
Publisher_xml | – name: MVA Organization |
Score | 1.6304866 |
Snippet | A novel self-calibration method for estimation of radial lens distortion is proposed. It requires only a single image of a textured plane that may have... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 472 |
SubjectTerms | Calibration Cameras Estimation Lenses Nonlinear distortion Optical distortion |
Title | Estimation of radial distortion using local spectra of planar textures |
URI | https://ieeexplore.ieee.org/document/7986903 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTp5UNvGbHDyark2TJj2KbAxhIvjBbiMfb0Qc3SjtxV9vks6J4sFbCCFtkpbnTfI8z4vQlf9mlfZhNckKlxKP14pIqzVhQZ3jQ2CZuXCgP78vZs_sbsEXPXS908IAQCSfQRKK8S7frk0bjsrGogz5k_I-6vuNW6fV6i4qaV5m5Xj-chO4WiLZtvuRMCXixXQfzb-e1NFE3pO20Yn5-GXC-N9XOUCjb2UefthhziHqQTVE04n_TzsJIl47XAe7gRW20QAkVgZy-yuOsIWjtLJWoeFmpSpV48D9aP2ue4Qep5On2xnZ5kcgb2XakDLlVucgC8MoKCotD36CjEsAmVvLlWSmdJSKVEDhDNcFd1Q5lTOTaR-ZHKFBta7gGGFIhbEqBeU7YpCDysBHUUIYj2SWSjhBwzADy01ngLHcDv707-oztBdWoWMFnqNBU7dw4ZG70ZdxyT4BqGGbuw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ4ebdemTZseRTamrkNwym4jP76KOLZR2ot_vUk6J4oHbyGEpkka3tfkvfcBXJlvVkgTVnthUgSewWvhcS2lF1t1jgmBeVjYA_18nAyf4_spm7bgeqOFQURHPkPfFt1dvl6q2h6V9dLM5k-KtmDb4D6jjVqruaqkURZmvfzlxrK1Un_d8kfKFIcYgz3Iv_pqiCLvfl1JX338smH878vsQ_dbm0ceN6hzAC1cdGDQNzu1ESGSZUFKazgwJ9pZgLhKS29_JQ64iBNXlsI2XM3FQpTEsj9q89_dhadBf3I79NYZEry3LKi8LGBaRsgTFVMUlGtmHQVjxhF5pDUTPFZZQWkapJgUismEFVQUIopVKE1scgjtxXKBR0AwSJUWAQrzoBgjFCGaOCpNlcEyTTkeQ8fOwGzVWGDM1oM_-bv6EnaGk3w0G92NH05h165IwxE8g3ZV1nhucLySF275PgH4jJ8F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Fifteenth+IAPR+International+Conference+on+Machine+Vision+Applications+%28MVA%29&rft.atitle=Estimation+of+radial+distortion+using+local+spectra+of+planar+textures&rft.au=Spitschan%2C+Benjamin&rft.au=Ostermann%2C+Jorn&rft.date=2017-05-01&rft.pub=MVA+Organization&rft.spage=472&rft.epage=477&rft_id=info:doi/10.23919%2FMVA.2017.7986903&rft.externalDocID=7986903 |