Data mining for meteorological applications: Decision trees for modeling rainfall prediction

Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity,...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE International Conference on Computational Intelligence and Computing Research pp. 1 - 4
Main Authors Geetha, A., Nasira, G. M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text
ISBN1479939749
9781479939749
DOI10.1109/ICCIC.2014.7238481

Cover

Abstract Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. There are many data mining techniques employed for weather prediction, but decision tree evaluation can be quantified. This paper highlights a model using decision tree to predict weather phenomena like fog, rainfall, cyclones and thunderstorms, which can be a life saving information and used by peoples of all walks of life in making wise and intelligent decisions. This model may be used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. The proposed model is implemented using the open source data mining tool Rapidminer.
AbstractList Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. There are many data mining techniques employed for weather prediction, but decision tree evaluation can be quantified. This paper highlights a model using decision tree to predict weather phenomena like fog, rainfall, cyclones and thunderstorms, which can be a life saving information and used by peoples of all walks of life in making wise and intelligent decisions. This model may be used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. The proposed model is implemented using the open source data mining tool Rapidminer.
Author Geetha, A.
Nasira, G. M.
Author_xml – sequence: 1
  givenname: A.
  surname: Geetha
  fullname: Geetha, A.
  email: gee_sam@yahoo.com
  organization: Mother Teresa Women's Univ., Kodaikanal, India
– sequence: 2
  givenname: G. M.
  surname: Nasira
  fullname: Nasira, G. M.
  email: nasiragm99@yahoo.com
  organization: Dept. of Comput. Sci., Chikkanna Gov. Arts Coll., Tirupur, India
BookMark eNo1T0tqwzAUVGm7aNJcoN3oAnalSLak7orTjyHQTZaF8CQ9B4FsGdmb3r4OSVfzYWZgVuRuSAMS8sRZyTkzL23TtE25ZVyWaiu01PyGbIzSXCpjhFFVfUtW_0KaB_KzgxloH4YwnGiXMu1xxpRTTKfgIFIYx7iQOaRheqU7dGFaKJ0z4nTJJ4_xXM4Qhg5ipGNGH9y58UjuF2fCzRXX5PDxfmi-iv33Z9u87Ytg2Fxo14G3tQTHrbSCGaEVqkpwr6QAawWvHFhf1dowwS2A74BJ57xnteS6EmvyfJkNiHgcc-gh_x6v_8Ufz2dUiw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIC.2014.7238481
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479939756
1479939757
EndPage 4
ExternalDocumentID 7238481
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-8cfadb64ac1b4b309387e7531d743abb315cabd5689031baadfa04ccdd0641853
IEDL.DBID RIE
ISBN 1479939749
9781479939749
IngestDate Wed Jun 26 19:20:57 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8cfadb64ac1b4b309387e7531d743abb315cabd5689031baadfa04ccdd0641853
PageCount 4
ParticipantIDs ieee_primary_7238481
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle 2014 IEEE International Conference on Computational Intelligence and Computing Research
PublicationTitleAbbrev ICCIC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8079227
Snippet Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ANN
CART
CHAID
Classification
Classification algorithms
Data mining
Data models
decision tree
Decision trees
Predictive models
Rapidminer
Weather forecasting
Title Data mining for meteorological applications: Decision trees for modeling rainfall prediction
URI https://ieeexplore.ieee.org/document/7238481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKJyZAFPGWB0acJsSxY9aUqkUqYihSB6TK13YkRF8q6cLX45tHKYiBLYniyPIj5ybnnnsIuUHznkSCYiZyKeO5iBkoCUy7UFnHI5mXCu_Rkxi88MdJMmmR260WxjlXJp-5AA9LLt8uzQZ_lXXRIIujznrPL7MdrZb0IOvjYtWUcGrOG5FMqLrDLBtmmMnFg_opP-xUSjTpH5BR048qieQ92BQQmM9fJRr_29FD0vnW7dHnLSIdkZZbHJPXni40nZdGENSHqHTu4-Tlunnp0V0K-572as8dimz1R3U_muVgY3STyPVsRldrpHewRYeM-w_jbMBqTwX2psKCpSbXFgTXJgIOyIKm0vkvlsj6SEIDxFFiNNhEpMrvdtDa5jrkxljrQxeE9hPSXiwX7pTQWIJQEKa5jIEbLDHMhU1cKNK7WHnwOyPHODDTVVU1Y1qPyfnfly_IPk5OlShySdrFeuOuPNwXcF3O8xdGjKlH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsAEqEVAeXhgxGlCnIdZU6oW2oqhSB2QKl_bkRB9qaQLX49vHqUgBrY4si3LVnJucu65h5AbNO8JIhBMeSZmPA19BiICJo0rtOFelOYK7-Eo7L3wx0kwqZHbrRbGGJMnnxkHL3MuXy_VBn-VtdEgi6POes_iPg921FqRhVkbGYuqiFPVrmQyrmj3k6SfYC4Xd8p5fhiq5HjSPSTDaiVFGsm7s8nAUZ-_ijT-d6lHpPmt3KPPW0w6JjWzaJDXjswknedWENQGqXRuI-Xlunrt0V0S-552Stcdinz1R9Ef7XJwMPpJpHI2o6s1Ejw4oknG3Ydx0mOlqwJ7E27GYpVKDSGXygMOyIPGkbHfLJ62sYQE8L1ASdBBGAv7vIOUOpUuV0prG7wguJ-Q-mK5MKeE-hGEAtw4jXzgCosM81AHxg3jO19Y-DsjDdyY6aqomzEt9-T879vXZL83Hg6mg_7oqUUO8KCKtJELUs_WG3NpwT-Dq_zMvwBUrKyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Conference+on+Computational+Intelligence+and+Computing+Research&rft.atitle=Data+mining+for+meteorological+applications%3A+Decision+trees+for+modeling+rainfall+prediction&rft.au=Geetha%2C+A.&rft.au=Nasira%2C+G.+M.&rft.date=2014-12-01&rft.pub=IEEE&rft.isbn=1479939749&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICCIC.2014.7238481&rft.externalDocID=7238481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/sc.gif&client=summon&freeimage=true