Data mining for meteorological applications: Decision trees for modeling rainfall prediction
Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity,...
Saved in:
Published in | 2014 IEEE International Conference on Computational Intelligence and Computing Research pp. 1 - 4 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISBN | 1479939749 9781479939749 |
DOI | 10.1109/ICCIC.2014.7238481 |
Cover
Abstract | Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. There are many data mining techniques employed for weather prediction, but decision tree evaluation can be quantified. This paper highlights a model using decision tree to predict weather phenomena like fog, rainfall, cyclones and thunderstorms, which can be a life saving information and used by peoples of all walks of life in making wise and intelligent decisions. This model may be used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. The proposed model is implemented using the open source data mining tool Rapidminer. |
---|---|
AbstractList | Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient times as a big herculean task, because it depends on various parameters to predict the dependent variables like temperature, rainfall, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. There are many data mining techniques employed for weather prediction, but decision tree evaluation can be quantified. This paper highlights a model using decision tree to predict weather phenomena like fog, rainfall, cyclones and thunderstorms, which can be a life saving information and used by peoples of all walks of life in making wise and intelligent decisions. This model may be used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. The proposed model is implemented using the open source data mining tool Rapidminer. |
Author | Geetha, A. Nasira, G. M. |
Author_xml | – sequence: 1 givenname: A. surname: Geetha fullname: Geetha, A. email: gee_sam@yahoo.com organization: Mother Teresa Women's Univ., Kodaikanal, India – sequence: 2 givenname: G. M. surname: Nasira fullname: Nasira, G. M. email: nasiragm99@yahoo.com organization: Dept. of Comput. Sci., Chikkanna Gov. Arts Coll., Tirupur, India |
BookMark | eNo1T0tqwzAUVGm7aNJcoN3oAnalSLak7orTjyHQTZaF8CQ9B4FsGdmb3r4OSVfzYWZgVuRuSAMS8sRZyTkzL23TtE25ZVyWaiu01PyGbIzSXCpjhFFVfUtW_0KaB_KzgxloH4YwnGiXMu1xxpRTTKfgIFIYx7iQOaRheqU7dGFaKJ0z4nTJJ4_xXM4Qhg5ipGNGH9y58UjuF2fCzRXX5PDxfmi-iv33Z9u87Ytg2Fxo14G3tQTHrbSCGaEVqkpwr6QAawWvHFhf1dowwS2A74BJ57xnteS6EmvyfJkNiHgcc-gh_x6v_8Ufz2dUiw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCIC.2014.7238481 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781479939756 1479939757 |
EndPage | 4 |
ExternalDocumentID | 7238481 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-8cfadb64ac1b4b309387e7531d743abb315cabd5689031baadfa04ccdd0641853 |
IEDL.DBID | RIE |
ISBN | 1479939749 9781479939749 |
IngestDate | Wed Jun 26 19:20:57 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-8cfadb64ac1b4b309387e7531d743abb315cabd5689031baadfa04ccdd0641853 |
PageCount | 4 |
ParticipantIDs | ieee_primary_7238481 |
PublicationCentury | 2000 |
PublicationDate | 2014-Dec. |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE International Conference on Computational Intelligence and Computing Research |
PublicationTitleAbbrev | ICCIC |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8079227 |
Snippet | Prediction is a challenging task and that too for weather is even more complex, dynamic and mind-boggling. Weather prediction poses right from the ancient... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | ANN CART CHAID Classification Classification algorithms Data mining Data models decision tree Decision trees Predictive models Rapidminer Weather forecasting |
Title | Data mining for meteorological applications: Decision trees for modeling rainfall prediction |
URI | https://ieeexplore.ieee.org/document/7238481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKJyZAFPGWB0acJsSxY9aUqkUqYihSB6TK13YkRF8q6cLX45tHKYiBLYniyPIj5ybnnnsIuUHznkSCYiZyKeO5iBkoCUy7UFnHI5mXCu_Rkxi88MdJMmmR260WxjlXJp-5AA9LLt8uzQZ_lXXRIIujznrPL7MdrZb0IOvjYtWUcGrOG5FMqLrDLBtmmMnFg_opP-xUSjTpH5BR048qieQ92BQQmM9fJRr_29FD0vnW7dHnLSIdkZZbHJPXni40nZdGENSHqHTu4-Tlunnp0V0K-572as8dimz1R3U_muVgY3STyPVsRldrpHewRYeM-w_jbMBqTwX2psKCpSbXFgTXJgIOyIKm0vkvlsj6SEIDxFFiNNhEpMrvdtDa5jrkxljrQxeE9hPSXiwX7pTQWIJQEKa5jIEbLDHMhU1cKNK7WHnwOyPHODDTVVU1Y1qPyfnfly_IPk5OlShySdrFeuOuPNwXcF3O8xdGjKlH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsAEqEVAeXhgxGlCnIdZU6oW2oqhSB2QKl_bkRB9qaQLX49vHqUgBrY4si3LVnJucu65h5AbNO8JIhBMeSZmPA19BiICJo0rtOFelOYK7-Eo7L3wx0kwqZHbrRbGGJMnnxkHL3MuXy_VBn-VtdEgi6POes_iPg921FqRhVkbGYuqiFPVrmQyrmj3k6SfYC4Xd8p5fhiq5HjSPSTDaiVFGsm7s8nAUZ-_ijT-d6lHpPmt3KPPW0w6JjWzaJDXjswknedWENQGqXRuI-Xlunrt0V0S-552Stcdinz1R9Ef7XJwMPpJpHI2o6s1Ejw4oknG3Ydx0mOlqwJ7E27GYpVKDSGXygMOyIPGkbHfLJ62sYQE8L1ASdBBGAv7vIOUOpUuV0prG7wguJ-Q-mK5MKeE-hGEAtw4jXzgCosM81AHxg3jO19Y-DsjDdyY6aqomzEt9-T879vXZL83Hg6mg_7oqUUO8KCKtJELUs_WG3NpwT-Dq_zMvwBUrKyU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Conference+on+Computational+Intelligence+and+Computing+Research&rft.atitle=Data+mining+for+meteorological+applications%3A+Decision+trees+for+modeling+rainfall+prediction&rft.au=Geetha%2C+A.&rft.au=Nasira%2C+G.+M.&rft.date=2014-12-01&rft.pub=IEEE&rft.isbn=1479939749&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICCIC.2014.7238481&rft.externalDocID=7238481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/sc.gif&client=summon&freeimage=true |