Unsupervised learning of 3D object models from partial views
We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate model...
Saved in:
Published in | 2009 IEEE International Conference on Robotics and Automation pp. 801 - 806 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 1424427886 9781424427888 |
ISSN | 1050-4729 |
DOI | 10.1109/ROBOT.2009.5152524 |
Cover
Abstract | We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models. |
---|---|
AbstractList | We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models. |
Author | Steder, B. Grisetti, G. Burgard, W. Ruhnke, M. |
Author_xml | – sequence: 1 givenname: M. surname: Ruhnke fullname: Ruhnke, M. organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany – sequence: 2 givenname: B. surname: Steder fullname: Steder, B. organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany – sequence: 3 givenname: G. surname: Grisetti fullname: Grisetti, G. organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany – sequence: 4 givenname: W. surname: Burgard fullname: Burgard, W. organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany |
BookMark | eNpFkMtKw0AYRkdswbT2BXQzL5D4zy0zA260XqEQkLguk8wfmZIbmVjx7RUsuPo4m8PhW5FFP_RIyBWDjDGwN2_FfVFmHMBmiimuuDwjKya5lFwbK8__weQLkjBQkErN7ZIkFtJcAlPmgmxiPAAA07kUTCTk9r2PnyNOxxDR0xbd1If-gw4NFQ90qA5Yz7QbPLaRNtPQ0dFNc3AtPQb8ipdk2bg24ua0a1I-PZbbl3RXPL9u73ZpsDCnppZO_-YyrJAbg7rhVnOHvtZeWDCVN772qKWyvvKNYZ4jZ3mtHTeVQyHW5PpPGxBxP06hc9P3_nSC-AEjsU6o |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ROBOT.2009.5152524 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1424427894 9781424427895 |
EndPage | 806 |
ExternalDocumentID | 5152524 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i90t-8c4a75241ebe288e7f2972aedc7d3908bd8dcde7459dbdf81d2e216c7a28bae33 |
IEDL.DBID | RIE |
ISBN | 1424427886 9781424427888 |
ISSN | 1050-4729 |
IngestDate | Wed Aug 27 02:00:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 90-640158 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-8c4a75241ebe288e7f2972aedc7d3908bd8dcde7459dbdf81d2e216c7a28bae33 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5152524 |
PublicationCentury | 2000 |
PublicationDate | 2009-May |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-May |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE International Conference on Robotics and Automation |
PublicationTitleAbbrev | ROBOT |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001764313 ssj0003366 |
Score | 1.5071541 |
Snippet | We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 801 |
SubjectTerms | Clouds Iterative algorithms Laser modes Layout Merging model learning Object detection range images Robotics and automation Robots Robustness Unsupervised learning |
Title | Unsupervised learning of 3D object models from partial views |
URI | https://ieeexplore.ieee.org/document/5152524 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTrBwtIhbHhhJm9iJ7UhMHFWFVIpQK3WrfAUhUFK1ycKv5zlHC4iBLclix-_J7_y-h9BVTGOhJEs8rajxwgDUWBkWeIZz8I6YLxLhAM7jJzaahY_zaN5C1xssjLW2bD6zffdY1vJNpguXKhtEblgPCduoDWpWYbW2-RQOtjXY3sKUlnVKcB98LwQPsgF1EYj5WMP1VL-LBk3jx4OXye1kWvFY1sv9mLtSmp3hHho3G666Td77Ra76-vMXl-N__2gf9bYAP_y8MV0HqGXTQ7T7jZuwi25m6bpYuptkbQ2uh0u84izB9B5nyqVvcDlGZ40dRAUvnQ7KD1ySm_bQdPgwvRt59agF7y32c0_oUHLYRwAiJUJYnpCYE2mN5obGvlBGGG0sD6PYKJOAFIklAdNcEpC0pfQIddIstccIU6YhRJKBkJEJIXoTijFlA_CSpCSGiBPUdcewWFZkGov6BE7__nyGdqryjeswPEedfFXYC_ACcnVZiv8LXy-qEw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGYCFo0XceGAkbWI7tiMxcVQFeiCUSt0qO3YQAiUVTRZ-PXaOFhADW5LFjt-T3_l9D4CLAAdcCho7kcTKIZ5RY6mo5yjGjHdEXR5zC3Aejmh_Qh6m_rQBLpdYGK110XymO_axqOWrNMptqqzr22E9iKyBdWP3iV-itVYZFWasq7e6hzEuKpXGgXAdYnzIGtaFTNRHa7an6p3XeBo36D6Pr8dhyWRZLfhj8kpheHrbYFhvuew3eevkmexEn7_YHP_7TzugvYL4wael8doFDZ3sga1v7IQtcDVJFvnc3iULrWA1XuIFpjHEtzCVNoEDi0E6C2hBKnButVC8w4LetA3C3l1403eqYQvOa-BmDo-IYGYfnhEq4lyzGAUMCa0ipnDgcqm4ipRmxA-UVLGRI9LIoxETyMhaY7wPmkma6AMAMY1MkCQ8LnxFTPzGJaVSe8ZPEgIpxA9Byx7DbF7SacyqEzj6-_M52OiHw8FscD96PAabZTHH9huegGb2ketT4xNk8qxQhS9_2q1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=Unsupervised+learning+of+3D+object+models+from+partial+views&rft.au=Ruhnke%2C+M.&rft.au=Steder%2C+B.&rft.au=Grisetti%2C+G.&rft.au=Burgard%2C+W.&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=1424427886&rft.issn=1050-4729&rft.spage=801&rft.epage=806&rft_id=info:doi/10.1109%2FROBOT.2009.5152524&rft.externalDocID=5152524 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4729&client=summon |