Unsupervised learning of 3D object models from partial views

We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate model...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on Robotics and Automation pp. 801 - 806
Main Authors Ruhnke, M., Steder, B., Grisetti, G., Burgard, W.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2009
Subjects
Online AccessGet full text
ISBN1424427886
9781424427888
ISSN1050-4729
DOI10.1109/ROBOT.2009.5152524

Cover

Abstract We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models.
AbstractList We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models.
Author Steder, B.
Grisetti, G.
Burgard, W.
Ruhnke, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Ruhnke
  fullname: Ruhnke, M.
  organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany
– sequence: 2
  givenname: B.
  surname: Steder
  fullname: Steder, B.
  organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany
– sequence: 3
  givenname: G.
  surname: Grisetti
  fullname: Grisetti, G.
  organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany
– sequence: 4
  givenname: W.
  surname: Burgard
  fullname: Burgard, W.
  organization: Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany
BookMark eNpFkMtKw0AYRkdswbT2BXQzL5D4zy0zA260XqEQkLguk8wfmZIbmVjx7RUsuPo4m8PhW5FFP_RIyBWDjDGwN2_FfVFmHMBmiimuuDwjKya5lFwbK8__weQLkjBQkErN7ZIkFtJcAlPmgmxiPAAA07kUTCTk9r2PnyNOxxDR0xbd1If-gw4NFQ90qA5Yz7QbPLaRNtPQ0dFNc3AtPQb8ipdk2bg24ua0a1I-PZbbl3RXPL9u73ZpsDCnppZO_-YyrJAbg7rhVnOHvtZeWDCVN772qKWyvvKNYZ4jZ3mtHTeVQyHW5PpPGxBxP06hc9P3_nSC-AEjsU6o
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ROBOT.2009.5152524
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424427894
9781424427895
EndPage 806
ExternalDocumentID 5152524
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i90t-8c4a75241ebe288e7f2972aedc7d3908bd8dcde7459dbdf81d2e216c7a28bae33
IEDL.DBID RIE
ISBN 1424427886
9781424427888
ISSN 1050-4729
IngestDate Wed Aug 27 02:00:58 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 90-640158
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8c4a75241ebe288e7f2972aedc7d3908bd8dcde7459dbdf81d2e216c7a28bae33
PageCount 6
ParticipantIDs ieee_primary_5152524
PublicationCentury 2000
PublicationDate 2009-May
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-May
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on Robotics and Automation
PublicationTitleAbbrev ROBOT
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764313
ssj0003366
Score 1.5071541
Snippet We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans....
SourceID ieee
SourceType Publisher
StartPage 801
SubjectTerms Clouds
Iterative algorithms
Laser modes
Layout
Merging
model learning
Object detection
range images
Robotics and automation
Robots
Robustness
Unsupervised learning
Title Unsupervised learning of 3D object models from partial views
URI https://ieeexplore.ieee.org/document/5152524
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLbaTrBwtIhbHhhJm9iJ7UhMHFWFVIpQK3WrfAUhUFK1ycKv5zlHC4iBLclix-_J7_y-h9BVTGOhJEs8rajxwgDUWBkWeIZz8I6YLxLhAM7jJzaahY_zaN5C1xssjLW2bD6zffdY1vJNpguXKhtEblgPCduoDWpWYbW2-RQOtjXY3sKUlnVKcB98LwQPsgF1EYj5WMP1VL-LBk3jx4OXye1kWvFY1sv9mLtSmp3hHho3G666Td77Ra76-vMXl-N__2gf9bYAP_y8MV0HqGXTQ7T7jZuwi25m6bpYuptkbQ2uh0u84izB9B5nyqVvcDlGZ40dRAUvnQ7KD1ySm_bQdPgwvRt59agF7y32c0_oUHLYRwAiJUJYnpCYE2mN5obGvlBGGG0sD6PYKJOAFIklAdNcEpC0pfQIddIstccIU6YhRJKBkJEJIXoTijFlA_CSpCSGiBPUdcewWFZkGov6BE7__nyGdqryjeswPEedfFXYC_ACcnVZiv8LXy-qEw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGYCFo0XceGAkbWI7tiMxcVQFeiCUSt0qO3YQAiUVTRZ-PXaOFhADW5LFjt-T3_l9D4CLAAdcCho7kcTKIZ5RY6mo5yjGjHdEXR5zC3Aejmh_Qh6m_rQBLpdYGK110XymO_axqOWrNMptqqzr22E9iKyBdWP3iV-itVYZFWasq7e6hzEuKpXGgXAdYnzIGtaFTNRHa7an6p3XeBo36D6Pr8dhyWRZLfhj8kpheHrbYFhvuew3eevkmexEn7_YHP_7TzugvYL4wael8doFDZ3sga1v7IQtcDVJFvnc3iULrWA1XuIFpjHEtzCVNoEDi0E6C2hBKnButVC8w4LetA3C3l1403eqYQvOa-BmDo-IYGYfnhEq4lyzGAUMCa0ipnDgcqm4ipRmxA-UVLGRI9LIoxETyMhaY7wPmkma6AMAMY1MkCQ8LnxFTPzGJaVSe8ZPEgIpxA9Byx7DbF7SacyqEzj6-_M52OiHw8FscD96PAabZTHH9huegGb2ketT4xNk8qxQhS9_2q1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Robotics+and+Automation&rft.atitle=Unsupervised+learning+of+3D+object+models+from+partial+views&rft.au=Ruhnke%2C+M.&rft.au=Steder%2C+B.&rft.au=Grisetti%2C+G.&rft.au=Burgard%2C+W.&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=1424427886&rft.issn=1050-4729&rft.spage=801&rft.epage=806&rft_id=info:doi/10.1109%2FROBOT.2009.5152524&rft.externalDocID=5152524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4729&client=summon