Feature extraction and classification of machined component texture images using wavelet and artificial intelligence techniques
In recent years use of image processing techniques for texture analysis of machined surface is gaining importance in the field of manufacturing. This manuscript addresses texture identification methodology using Wavelet transform and artificial intelligence techniques. Captured images of machined su...
Saved in:
Published in | 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) pp. 140 - 144 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISBN | 1538633051 9781538633052 |
DOI | 10.1109/ICMAE.2017.8038631 |
Cover
Loading…
Abstract | In recent years use of image processing techniques for texture analysis of machined surface is gaining importance in the field of manufacturing. This manuscript addresses texture identification methodology using Wavelet transform and artificial intelligence techniques. Captured images of machined surface using Electric discharge machining, milling, sand blasting and shaping is decomposed in to sub images and then discrete wavelet transform is applied on the sub images. To select the base wavelet minimum permutation entropy criterion is applied and statistical features were calculated from the base wavelet. Training and testing of feature vector is performed using two artificial intelligence techniques support vector machine and artificial neural network for identifying textured surface images.100 % training identification of textured images is obtained using support vector machine and artificial neural network and 87.5 % and 100 % testing identification of textured images is obtained using support vector machine and artificial neural network respectively. Results revealed that the present methodology identifies machined surface images with high accuracy. |
---|---|
AbstractList | In recent years use of image processing techniques for texture analysis of machined surface is gaining importance in the field of manufacturing. This manuscript addresses texture identification methodology using Wavelet transform and artificial intelligence techniques. Captured images of machined surface using Electric discharge machining, milling, sand blasting and shaping is decomposed in to sub images and then discrete wavelet transform is applied on the sub images. To select the base wavelet minimum permutation entropy criterion is applied and statistical features were calculated from the base wavelet. Training and testing of feature vector is performed using two artificial intelligence techniques support vector machine and artificial neural network for identifying textured surface images.100 % training identification of textured images is obtained using support vector machine and artificial neural network and 87.5 % and 100 % testing identification of textured images is obtained using support vector machine and artificial neural network respectively. Results revealed that the present methodology identifies machined surface images with high accuracy. |
Author | Kiran, M. B. Vakharia, Vinay Dave, Neil Jayeshbhai Kagathara, Uday |
Author_xml | – sequence: 1 givenname: Vinay surname: Vakharia fullname: Vakharia, Vinay email: vinay.vakharia@sot.pdpu.ac.in organization: Dept. of Mech. Eng., Pandit Deendayal Pet. Univ., Gandhinagar, India – sequence: 2 givenname: M. B. surname: Kiran fullname: Kiran, M. B. email: MB.kiran@sot.pdpu.ac.in organization: Dept. of Mech. Eng., Pandit Deendayal Pet. Univ., Gandhinagar, India – sequence: 3 givenname: Neil Jayeshbhai surname: Dave fullname: Dave, Neil Jayeshbhai email: neil.dmc13@sot.pdpu.ac.in organization: Dept. of Mech. Eng., Pandit Deendayal Pet. Univ., Gandhinagar, India – sequence: 4 givenname: Uday surname: Kagathara fullname: Kagathara, Uday email: uday.kmc13@sot.pdpu.ac.in organization: Dept. of Mech. Eng., Pandit Deendayal Pet. Univ., Gandhinagar, India |
BookMark | eNo1kMtOwzAQRY2ABS39Adj4BxJsnPixrKqWVipi0301ccappcQpicNjxa-TlrIa3RmdO3dmQm5CG5CQB85Szpl52ixe58v0mXGVaia0FPyKzIzSPD8JwaS5JpN_kfM78rNCiEOHFL9iBzb6NlAIJbU19L133sK51TragD34gOOobY7j1hBpHKET6xuosKdD70NFP-EDa4xnF-jiycNDTX2IWNe-wmBxBO0h-PcB-3ty66DucXapU7JbLXeLdbJ9e9ks5tvEGxYTXWTCapYbx0TGQYJCZ7JMK25y6QSKErUqs1IJLnnOFGo3nqyLQmouM8PElDz-2XpE3B-7MXH3vb-8SPwCF5hghA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMAE.2017.8038631 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538633069 153863306X |
EndPage | 144 |
ExternalDocumentID | 8038631 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-8b43c8059f0341a6a7ef944871956f3e3de87d4d73161507e8f8158bb68164903 |
IEDL.DBID | RIE |
ISBN | 1538633051 9781538633052 |
IngestDate | Wed Jun 26 19:27:24 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-8b43c8059f0341a6a7ef944871956f3e3de87d4d73161507e8f8158bb68164903 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8038631 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) |
PublicationTitleAbbrev | ICMAE |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6725366 |
Snippet | In recent years use of image processing techniques for texture analysis of machined surface is gaining importance in the field of manufacturing. This... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 140 |
SubjectTerms | artificial neural network Artificial neural networks Entropy Milling support vector machine Support vector machines Surface texture Surface treatment Testing texture characterization wavelet |
Title | Feature extraction and classification of machined component texture images using wavelet and artificial intelligence techniques |
URI | https://ieeexplore.ieee.org/document/8038631 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjy60bGytUdDIGiC8YAJN9KurSGGYWALiRf_dd_rBqjx4G3rsu6lfWu_t33fe4TcZpI7rTm8SC5hEKCYbqBdHAUGgqGISd1TEWqHx0_J6IU_TnvTBrnbaWGstZ58ZkM89P_yzTIr8VNZR7BYJCiaPoDAba_V6mEr-G1Up3Danne3IhkmOw_98f0AmVxpWPfyo5yK302GR2S8taMikbyFZaHD7ONXisb_GnpM2nvdHn3e7UgnpGHzFvlElFeuLIVleFXJGKjKDc0QNyNRyM8NXTq68MRKC5dgkVjm8AiKvBC8d76AdWdNkSX_SjcKq1UUvhf0vCoJBZ1_y-5Jd7lh120yGQ4m_VFQl10I5pIVgdA8zgSgLsdgh1OJSq2TEMSlqCx0sY2NFanhBkteIZq0wsGQC60TAaGXZPEpaeZg4xmhVmuAAxychHEAKpFyEI6JRGqjlM266Tlp4djN3qvEGrN62C7-br4khzh_FVf2ijSLVWmvAREU-sa7whedmbaJ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjGx0bW3s0BALKiAdMuJF2bQ0xDANbTLz4r_veNkCNB29bl3VN-9b3ve373iPkNhGBVSqAF8mGDAIU3XaU9T1HQzDkMaE60kPtcDwOB8_Bw7QzrZG7rRbGGFOQz4yLh8W_fL1McvxU1uLM5yGKpvfA7wdip9bqYDtYrlclcdqctzcyGSZaw25830MuV-RW_fwoqFL4k_4hiTcjKWkkr26eKTf5-JWk8b9DPSLNnXKPPm190jGpmbRBPhHn5StDYSNelUIGKlNNE0TOSBUqVocuLV0U1EoDl2CbWKbwCIrMELx3voCdZ02RJ_9C3yXWq8iKXtD2yjQUdP4tvyfdZoddN8mk35t0B05VeMGZC5Y5XAV-wgF3WQY-ToYyMlZAGBehttD6xteGRzrQWPQK8aThFqacKxVyCL4E809IPYUxnhJqlAJAEICZsACgiictBGQ8FEpLaZJ2dEYaOHeztzK1xqyatvO_m2_I_mASj2aj4fjxghzgWpbM2UtSz1a5uQJ8kKnrwiy-AF6Zudk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+8th+International+Conference+on+Mechanical+and+Aerospace+Engineering+%28ICMAE%29&rft.atitle=Feature+extraction+and+classification+of+machined+component+texture+images+using+wavelet+and+artificial+intelligence+techniques&rft.au=Vakharia%2C+Vinay&rft.au=Kiran%2C+M.+B.&rft.au=Dave%2C+Neil+Jayeshbhai&rft.au=Kagathara%2C+Uday&rft.date=2017-07-01&rft.pub=IEEE&rft.isbn=1538633051&rft.spage=140&rft.epage=144&rft_id=info:doi/10.1109%2FICMAE.2017.8038631&rft.externalDocID=8038631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538633052/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538633052/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538633052/sc.gif&client=summon&freeimage=true |