A hierarchical framework for semantic scene classification in soccer sports video

In this paper, we propose a novel hierarchical framework for soccer (football) video classification. Unlike most existing video classification approaches, which focus on shot detection followed by classification based on clustering using shot aggregation, the proposed scheme perform a top-down video...

Full description

Saved in:
Bibliographic Details
Published inTENCON 2008 - 2008 IEEE Region 10 Conference pp. 1 - 6
Main Authors Kolekar, M.H., Palaniappan, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel hierarchical framework for soccer (football) video classification. Unlike most existing video classification approaches, which focus on shot detection followed by classification based on clustering using shot aggregation, the proposed scheme perform a top-down video scene classification which avoids shot clustering. This improves the classification accuracy and also maintains the temporal order of shots. In the hierarchy, at level-1, we use audio features, to extract potentially interesting clips from the video. At level-2, we classify these clips into field view and non-field view using feature of dominant grass color ratio. At level-3a, we classify field view into three kinds of views using motion-mask. At level-3b, we classify non-field view into close-up and crowd using skin color information. At level-4, we classify close-ups into the four frequently occuring classes such as player of team-A, player of team-B, goalkeeper of team-A, goalkeeper of team-B using jersey color information. We show promising results, with correctly classified soccer scenes, enabling structural and temporal analysis, such as highlight extraction, and video skimming.
AbstractList In this paper, we propose a novel hierarchical framework for soccer (football) video classification. Unlike most existing video classification approaches, which focus on shot detection followed by classification based on clustering using shot aggregation, the proposed scheme perform a top-down video scene classification which avoids shot clustering. This improves the classification accuracy and also maintains the temporal order of shots. In the hierarchy, at level-1, we use audio features, to extract potentially interesting clips from the video. At level-2, we classify these clips into field view and non-field view using feature of dominant grass color ratio. At level-3a, we classify field view into three kinds of views using motion-mask. At level-3b, we classify non-field view into close-up and crowd using skin color information. At level-4, we classify close-ups into the four frequently occuring classes such as player of team-A, player of team-B, goalkeeper of team-A, goalkeeper of team-B using jersey color information. We show promising results, with correctly classified soccer scenes, enabling structural and temporal analysis, such as highlight extraction, and video skimming.
Author Palaniappan, K.
Kolekar, M.H.
Author_xml – sequence: 1
  givenname: M.H.
  surname: Kolekar
  fullname: Kolekar, M.H.
  organization: Dept. of Comput. Sci., Univ. of Missouri, Columbia, MO
– sequence: 2
  givenname: K.
  surname: Palaniappan
  fullname: Palaniappan, K.
  organization: Dept. of Comput. Sci., Univ. of Missouri, Columbia, MO
BookMark eNo9UMFqAjEUTFuFqvULvOQH1r5ksyY5ilhbEKXgXd7GF0yrG0mWlv59t9R2GJjDDAMzQ9ZrYkOMTQRMhQD7uFtuFtvNVAKYqdKzWaX0DRtbbYSSqiNYecsGUlS2KFUFd2z4Zxjb-zeU7LPhT4eFUmp1z8Y5v0GHCjRYMWCvc34MlDC5Y3B44j7hmT5jeuc-Jp7pjE0bHM-OGuLuhDkH3wXbEBseGp6jc9TlLjG1mX-EA8UH1vd4yjS-6ojtnpa7xXOx3q5eFvN1ESy0hanIUO2pVlJoV1qpdGUPthaGSAtwNdagFXrRDZ6hN9ZYBQiItTbagy9HbPJbG4hof0nhjOlrf32q_Ab2JVlC
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/TENCON.2008.4766547
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424424092
1424424097
EISSN 2159-3450
EndPage 6
ExternalDocumentID 4766547
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
AAJGR
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIO
ID FETCH-LOGICAL-i90t-85e8ebfeb4217c3924759d9b18ee710cbab074af17816af898940a0aab787f0f3
IEDL.DBID RIE
ISBN 1424424089
9781424424085
ISSN 2159-3442
IngestDate Wed Jun 26 19:22:13 EDT 2024
IsPeerReviewed false
IsScholarly false
LCCN 2008903274
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-85e8ebfeb4217c3924759d9b18ee710cbab074af17816af898940a0aab787f0f3
PageCount 6
ParticipantIDs ieee_primary_4766547
PublicationCentury 2000
PublicationDate 2008-Nov.
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-Nov.
PublicationDecade 2000
PublicationTitle TENCON 2008 - 2008 IEEE Region 10 Conference
PublicationTitleAbbrev TENCON
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000507091
ssj0000602087
Score 1.4762125
Snippet In this paper, we propose a novel hierarchical framework for soccer (football) video classification. Unlike most existing video classification approaches,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer science
Data mining
Event detection
Feature extraction
Gunshot detection systems
Internet
Layout
Motion detection
Skin
Title A hierarchical framework for semantic scene classification in soccer sports video
URI https://ieeexplore.ieee.org/document/4766547
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp6mbuJvcvBotoymS3MU2RBhQ2HCbiNJX2CInbju4l_ve2k7UTx4a3tI27w2-V7yvu9j7MZ5rRGFgDBZ0EKZAMJ6nQow1vokNV5JIgrP5uOHF_W4TJctdrvnwgBALD6DAR3Gvfx843e0VDZUOnrltllbG1NxtfbrKRKBjax1X6pRmOwniS2Nk5oRiYpZe-R1kaqXaeSe6vO0ViQaSTNcTDCfnld1lvUtf3ivxKln2mWz5qGripPXwa50A__5S8_xv291yPrfJD_-tJ--jlgLimPWbVweeP3T99jzHSe_7LjjgAHloSnn4oh3-RbeMDZrz0kVCrgnME7VRzHgfF1wjL7H5mL2vOXE-tv02WI6Wdw_iNqIQayNLEWWQgYugFOYv3gEVKQRmBs3ygAQoHhnHQIRG0bYn2MbyJBSSSutdTgaBBmSE9YpNgWcMq4ym-Q6ZLnMEIeNU-tpm1SpJPcWwZI-Yz3qoNV7JbWxqvvm_O_LF-wglm9EauAl65QfO7hCjFC66_hxfAGYPLS7
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBIWldxmnhEqKhAW4EUpG6V7ZylCpEimi78eu6cpAjEwJZkcBJfYr-z773H2JWxcYwoBAKVuDiQykGgbRwFoLS2YaSsFEQUnkwHoxf5MItmDXa94cIAgC8-gy4d-r38bGnXtFTWk7H3yt1i2xHhipKttVlREQhtRKX8Uo7DZEBJfGmc1lQQSp-3e2YX6XqpWvCpOo8qTaK-UL10iBn1tKy0rG76w33FTz53LTapH7usOXntrgvTtZ-_FB3_-157rPNN8-NPmwlsnzUgP2Ct2ueBV799mz3fcHLM9nsOGFLu6oIujoiXr-ANo7OwnHShgFuC41R_5EPOFznH-FtszufPK068v2WHpXfD9HYUVFYMwUKJIkgiSMA4MBIzGIuQilQCM2X6CQBCFGu0QSiiXR_7c6AdWVJKoYXWBscDJ1x4yJr5MocjxmWiwyx2SSYSRGKDSFvaKJUyzKxGuBQfszZ10Py9FNuYV31z8vflS7YzSifj-fh--njKdn0xhycKnrFm8bGGc0QMhbnwH8oXRWa4CA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=TENCON+2008+-+2008+IEEE+Region+10+Conference&rft.atitle=A+hierarchical+framework+for+semantic+scene+classification+in+soccer+sports+video&rft.au=Kolekar%2C+M.H.&rft.au=Palaniappan%2C+K.&rft.date=2008-11-01&rft.pub=IEEE&rft.isbn=9781424424085&rft.issn=2159-3442&rft.eissn=2159-3450&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FTENCON.2008.4766547&rft.externalDocID=4766547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-3442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-3442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-3442&client=summon