Predicting Assessment Item Difficulty Levels Using a Gaussian Mixture Model
The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of appropriate assessments for personalized learning. AMrita Personalized Learning and Evaluation (AMPLE) platform adopts an automatic calibration met...
Saved in:
Published in | 2018 International Conference on Data Science and Engineering (ICDSE) pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICDSE.2018.8527800 |
Cover
Loading…
Abstract | The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of appropriate assessments for personalized learning. AMrita Personalized Learning and Evaluation (AMPLE) platform adopts an automatic calibration methodology using Gaussian Mixture Models for difficulty level assignment. This methodology uses performance features derived from the test-takers responses recorded in the assessment engine. Verification of this model, carried out on a diverse data set of assessment items spread over six subjects and 6000 students achieved about 91% accuracy by comparing the model-generated output with teacher-supplied difficulty levels. |
---|---|
AbstractList | The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of appropriate assessments for personalized learning. AMrita Personalized Learning and Evaluation (AMPLE) platform adopts an automatic calibration methodology using Gaussian Mixture Models for difficulty level assignment. This methodology uses performance features derived from the test-takers responses recorded in the assessment engine. Verification of this model, carried out on a diverse data set of assessment items spread over six subjects and 6000 students achieved about 91% accuracy by comparing the model-generated output with teacher-supplied difficulty levels. |
Author | Narayanan, Sankaran Bijlani, Kamal Saj, Fensa Merry Soumya, M.D. |
Author_xml | – sequence: 1 givenname: Sankaran surname: Narayanan fullname: Narayanan, Sankaran organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India – sequence: 2 givenname: Fensa Merry surname: Saj fullname: Saj, Fensa Merry organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India – sequence: 3 givenname: M.D. surname: Soumya fullname: Soumya, M.D. organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India – sequence: 4 givenname: Kamal surname: Bijlani fullname: Bijlani, Kamal organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India |
BookMark | eNotj91KwzAYQCMoqLMvoDd5gdb8NG1yObo5ix0KzuuRny8SaTtpUnFvP8RdnZvDgXOLLsfDCAjdU1JQStRj26ze1wUjVBZSsFoScoEyVUsquKxKKQS9RlmMX4QQVklRM3mDXt4mcMGmMH7iZYwQ4wBjwm2CAa-C98HOfTriDn6gj_gj_nkab_QcY9Aj3obfNE-AtwcH_R268rqPkJ25QLun9a55zrvXTdssuzwoknJJFdNO1AYs10Q76nXJLFgjuQOlOFHSlBq0NaRmQlPluTPKlN4pyRyr-AI9_GcDAOy_pzDo6bg_H_MTaPpPEw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICDSE.2018.8527800 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538648551 1538648555 |
EndPage | 6 |
ExternalDocumentID | 8527800 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-8192ad57bec3a0ad1fa42cecb83de993098b4aeacb0725a19f3db9b4fd982d263 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-8192ad57bec3a0ad1fa42cecb83de993098b4aeacb0725a19f3db9b4fd982d263 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8527800 |
PublicationCentury | 2000 |
PublicationDate | 2018-August |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-August |
PublicationDecade | 2010 |
PublicationTitle | 2018 International Conference on Data Science and Engineering (ICDSE) |
PublicationTitleAbbrev | ICDSE |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002685728 |
Score | 1.6925559 |
Snippet | The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Adaptation models adaptive learning systems Calibration Data models Electronic learning evaluation methodologies Gaussian mixture model intelligent tutoring systems Manuals personalized learning |
Title | Predicting Assessment Item Difficulty Levels Using a Gaussian Mixture Model |
URI | https://ieeexplore.ieee.org/document/8527800 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzaLk3SNjnKPvycDJyw20iaBIayydaC-teb124VxYO3UAgteSQvfe_3gdAFdco4am2gUuoC7ljk9xxzQQTZzNhEsNJ5bvSY3Dzzu2k8baDLmgtjrS3BZzaEYdnLN8usgFJZV8Q09RecJmr6H7eKq1XXU2gi4pSKLS-GyO5tr_80APCWCDcTfziolAlkuItG21dXuJGXsMh1mH3-UmX877ftoc43VQ-P6yS0jxp20Ub34xX0XwDRjK9q6U0MZXnchyIN6G184AcADK1xiRrACl-rYg2USjyav0NfAYNP2msHTYaDSe8m2LgmBHNJ8gAEzpSJUx8bpogykVOcZjbTghnrLyNECs2VP241SWmsIumY0VJzZ6SghibsALUWy4U9RFiAO66NE2kjxh0xigvtNFE04oqYWB-hNqzD7K3SxZhtluD478cnaAdiUYHnTlErXxX2zCf0XJ-XkfwCd6ah-A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvSksonf5uDRdmmatOlR9uHm1jFwwm4jaRIQZZOtBfWvt6_dKooHb6VQUvJI3uO93wdCN9RKbakxjgypdZj1vfzM-dbxIJtpEwi_cJ6Lx0H_iT3M-KyGbisujDGmAJ8ZFx6LWb5eJhm0ylqC0zAvcHbQLgcybsnWqjoqNBA8pGLLjCFRa9DuPHYBviXczac_PFSKFNI7QPF28RI58uJmqXKTz1-6jP_9u0PU_Cbr4UmVho5QzSwaaDhZwQQGMM34rhLfxNCYxx1o04DixgceAWRojQvcAJb4XmZrIFXi-PkdJgsYnNJem2ja607bfWfjm-A8RyR1QOJMah7m0fElkdqzktHEJEr42uTlCImEYjK_cBUJKZdeZH2tIsWsjgTVNPCPUX2xXJgThAX44xoeRMbzmSVaMqGsIpJ6TBLN1SlqwD7M30pljPlmC87-fn2N9vrTeDQfDcbDc7QPcSmhdBeonq4yc5mn91RdFVH9Ahj2pUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Conference+on+Data+Science+and+Engineering+%28ICDSE%29&rft.atitle=Predicting+Assessment+Item+Difficulty+Levels+Using+a+Gaussian+Mixture+Model&rft.au=Narayanan%2C+Sankaran&rft.au=Saj%2C+Fensa+Merry&rft.au=Soumya%2C+M.D.&rft.au=Bijlani%2C+Kamal&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICDSE.2018.8527800&rft.externalDocID=8527800 |