Predicting Assessment Item Difficulty Levels Using a Gaussian Mixture Model

The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of appropriate assessments for personalized learning. AMrita Personalized Learning and Evaluation (AMPLE) platform adopts an automatic calibration met...

Full description

Saved in:
Bibliographic Details
Published in2018 International Conference on Data Science and Engineering (ICDSE) pp. 1 - 6
Main Authors Narayanan, Sankaran, Saj, Fensa Merry, Soumya, M.D., Bijlani, Kamal
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2018
Subjects
Online AccessGet full text
DOI10.1109/ICDSE.2018.8527800

Cover

Loading…
Abstract The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of appropriate assessments for personalized learning. AMrita Personalized Learning and Evaluation (AMPLE) platform adopts an automatic calibration methodology using Gaussian Mixture Models for difficulty level assignment. This methodology uses performance features derived from the test-takers responses recorded in the assessment engine. Verification of this model, carried out on a diverse data set of assessment items spread over six subjects and 6000 students achieved about 91% accuracy by comparing the model-generated output with teacher-supplied difficulty levels.
AbstractList The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of appropriate assessments for personalized learning. AMrita Personalized Learning and Evaluation (AMPLE) platform adopts an automatic calibration methodology using Gaussian Mixture Models for difficulty level assignment. This methodology uses performance features derived from the test-takers responses recorded in the assessment engine. Verification of this model, carried out on a diverse data set of assessment items spread over six subjects and 6000 students achieved about 91% accuracy by comparing the model-generated output with teacher-supplied difficulty levels.
Author Narayanan, Sankaran
Bijlani, Kamal
Saj, Fensa Merry
Soumya, M.D.
Author_xml – sequence: 1
  givenname: Sankaran
  surname: Narayanan
  fullname: Narayanan, Sankaran
  organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India
– sequence: 2
  givenname: Fensa Merry
  surname: Saj
  fullname: Saj, Fensa Merry
  organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India
– sequence: 3
  givenname: M.D.
  surname: Soumya
  fullname: Soumya, M.D.
  organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India
– sequence: 4
  givenname: Kamal
  surname: Bijlani
  fullname: Bijlani, Kamal
  organization: Amrita Vishwa Vidyapeetham, e-Learning Research Lab (ERL), Amritapuri, India
BookMark eNotj91KwzAYQCMoqLMvoDd5gdb8NG1yObo5ix0KzuuRny8SaTtpUnFvP8RdnZvDgXOLLsfDCAjdU1JQStRj26ze1wUjVBZSsFoScoEyVUsquKxKKQS9RlmMX4QQVklRM3mDXt4mcMGmMH7iZYwQ4wBjwm2CAa-C98HOfTriDn6gj_gj_nkab_QcY9Aj3obfNE-AtwcH_R268rqPkJ25QLun9a55zrvXTdssuzwoknJJFdNO1AYs10Q76nXJLFgjuQOlOFHSlBq0NaRmQlPluTPKlN4pyRyr-AI9_GcDAOy_pzDo6bg_H_MTaPpPEw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDSE.2018.8527800
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538648551
1538648555
EndPage 6
ExternalDocumentID 8527800
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-8192ad57bec3a0ad1fa42cecb83de993098b4aeacb0725a19f3db9b4fd982d263
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8192ad57bec3a0ad1fa42cecb83de993098b4aeacb0725a19f3db9b4fd982d263
PageCount 6
ParticipantIDs ieee_primary_8527800
PublicationCentury 2000
PublicationDate 2018-August
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-August
PublicationDecade 2010
PublicationTitle 2018 International Conference on Data Science and Engineering (ICDSE)
PublicationTitleAbbrev ICDSE
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685728
Score 1.6925559
Snippet The difficulty level of an assessment item plays an important role in ensuring well qualified evaluation process as well as helping in the generation of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
adaptive learning systems
Calibration
Data models
Electronic learning
evaluation methodologies
Gaussian mixture model
intelligent tutoring systems
Manuals
personalized learning
Title Predicting Assessment Item Difficulty Levels Using a Gaussian Mixture Model
URI https://ieeexplore.ieee.org/document/8527800
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzaLk3SNjnKPvycDJyw20iaBIayydaC-teb124VxYO3UAgteSQvfe_3gdAFdco4am2gUuoC7ljk9xxzQQTZzNhEsNJ5bvSY3Dzzu2k8baDLmgtjrS3BZzaEYdnLN8usgFJZV8Q09RecJmr6H7eKq1XXU2gi4pSKLS-GyO5tr_80APCWCDcTfziolAlkuItG21dXuJGXsMh1mH3-UmX877ftoc43VQ-P6yS0jxp20Ub34xX0XwDRjK9q6U0MZXnchyIN6G184AcADK1xiRrACl-rYg2USjyav0NfAYNP2msHTYaDSe8m2LgmBHNJ8gAEzpSJUx8bpogykVOcZjbTghnrLyNECs2VP241SWmsIumY0VJzZ6SghibsALUWy4U9RFiAO66NE2kjxh0xigvtNFE04oqYWB-hNqzD7K3SxZhtluD478cnaAdiUYHnTlErXxX2zCf0XJ-XkfwCd6ah-A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zHvSksonf5uDRdmmatOlR9uHm1jFwwm4jaRIQZZOtBfWvt6_dKooHb6VQUvJI3uO93wdCN9RKbakxjgypdZj1vfzM-dbxIJtpEwi_cJ6Lx0H_iT3M-KyGbisujDGmAJ8ZFx6LWb5eJhm0ylqC0zAvcHbQLgcybsnWqjoqNBA8pGLLjCFRa9DuPHYBviXczac_PFSKFNI7QPF28RI58uJmqXKTz1-6jP_9u0PU_Cbr4UmVho5QzSwaaDhZwQQGMM34rhLfxNCYxx1o04DixgceAWRojQvcAJb4XmZrIFXi-PkdJgsYnNJem2ja607bfWfjm-A8RyR1QOJMah7m0fElkdqzktHEJEr42uTlCImEYjK_cBUJKZdeZH2tIsWsjgTVNPCPUX2xXJgThAX44xoeRMbzmSVaMqGsIpJ6TBLN1SlqwD7M30pljPlmC87-fn2N9vrTeDQfDcbDc7QPcSmhdBeonq4yc5mn91RdFVH9Ahj2pUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Conference+on+Data+Science+and+Engineering+%28ICDSE%29&rft.atitle=Predicting+Assessment+Item+Difficulty+Levels+Using+a+Gaussian+Mixture+Model&rft.au=Narayanan%2C+Sankaran&rft.au=Saj%2C+Fensa+Merry&rft.au=Soumya%2C+M.D.&rft.au=Bijlani%2C+Kamal&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICDSE.2018.8527800&rft.externalDocID=8527800