Semi-supervised learning in MCI-to-ad conversion prediction - When is unlabeled data useful?

This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients based on Magnetic Resonance Imaging (MRI). SSL methods differ from standard supervised learning methods in that they make use of unlabeled d...

Full description

Saved in:
Bibliographic Details
Published in2014 International Workshop on Pattern Recognition in Neuroimaging pp. 1 - 4
Main Authors Moradi, Elaheh, Tohka, Jussi, Gaser, Christian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients based on Magnetic Resonance Imaging (MRI). SSL methods differ from standard supervised learning methods in that they make use of unlabeled data - in this case data from MCI subjects whose final diagnosis is not yet known. We compare two widely used semi-supervised methods (low density separation (LDS) and semi-supervised discriminant analysis (SDA)) to the corresponding supervised methods using real and synthetic MRI data of MCI subjects. With simulated data, using SSL instead of supervised learning led to higher classification performance in certain cases, however, the applicability of semi-supervised methods depended strongly on the data distributions. With real MRI data, the SSL methods achieved significantly better classification performances over supervised methods. Moreover, even using a small number of unlabeled samples improved the AD conversion predictions.
AbstractList This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients based on Magnetic Resonance Imaging (MRI). SSL methods differ from standard supervised learning methods in that they make use of unlabeled data - in this case data from MCI subjects whose final diagnosis is not yet known. We compare two widely used semi-supervised methods (low density separation (LDS) and semi-supervised discriminant analysis (SDA)) to the corresponding supervised methods using real and synthetic MRI data of MCI subjects. With simulated data, using SSL instead of supervised learning led to higher classification performance in certain cases, however, the applicability of semi-supervised methods depended strongly on the data distributions. With real MRI data, the SSL methods achieved significantly better classification performances over supervised methods. Moreover, even using a small number of unlabeled samples improved the AD conversion predictions.
Author Moradi, Elaheh
Tohka, Jussi
Gaser, Christian
Author_xml – sequence: 1
  givenname: Elaheh
  surname: Moradi
  fullname: Moradi, Elaheh
  email: elaheh.moradi@tut.fi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 2
  givenname: Jussi
  surname: Tohka
  fullname: Tohka, Jussi
  organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland
– sequence: 3
  givenname: Christian
  surname: Gaser
  fullname: Gaser, Christian
  organization: Dept. of Psychiatry, Univ. of Jena, Jena, Germany
BookMark eNotj8tKAzEYRiPoQmsfQNzkBVL_XGYyWYkMagfqBS24EUqm-aOBaWZIZgq-vRW7Ot_mfHAuyGnsIxJyxWHBOZib17fnZiGAq0VZFVUhixMyN7riShujuDJwTj7fcRdYngZM-5DR0Q5tiiF-0RDpU92wsWfW0W0f95hy6CMdErqwHf8mox_fGGnIdIqdbbE7-M6Olk4Z_dTdXpIzb7uM8yNnZP1wv66XbPXy2NR3KxYMjEy7FgCNF6WyhRMKDQDnhfCaOyhMKUB5JbWSqIWHAz2XXAECetEK7uSMXP_fBkTcDCnsbPrZHJPlL8TBTvg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PRNI.2014.6858535
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479941490
9781479941506
1479941506
1479941492
EndPage 4
ExternalDocumentID 6858535
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-7db00e9f264a5d24e9001152f71d0596204f43743e72f0743f13140e0ef2b21d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7db00e9f264a5d24e9001152f71d0596204f43743e72f0743f13140e0ef2b21d3
PageCount 4
ParticipantIDs ieee_primary_6858535
PublicationCentury 2000
PublicationDate 2014-June
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-June
PublicationDecade 2010
PublicationTitle 2014 International Workshop on Pattern Recognition in Neuroimaging
PublicationTitleAbbrev PRNI
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.575153
Snippet This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Alzheimer's disease
Magnetic resonance imaging
Neuroimaging
Semisupervised learning
Support vector machines
Training
Title Semi-supervised learning in MCI-to-ad conversion prediction - When is unlabeled data useful?
URI https://ieeexplore.ieee.org/document/6858535
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDyarh9pa08ehmMTNoZO2EEYad6LFLUra3vxrzdJ60Tx4C2EQEJekt97eb_3HiFXEAGPAm2dKBduGPdFwoQnJeMyVBy450doAoVn82jyxO9X4apDrnexMIhoyWfomKb15cNG1uarbGhzpQdhl3S14dbEarWOSs9NhouH-dRwtbjTjvtRMMXixXifzL5mamgir05dpY78-JWE8b9LOSCD78g8uthhziHpYN4nz4_4nrGyLsy9LxFoWwrihWY5nY2mrNowAdQSzO3vGC22xj9jZEIZ1e9xTrOS1rk-ERqFgBraKK1LVPXb7YAsx3fL0YS1VRNYlrgVi0FfJEyUVnRECD7HxGp9voo9sKV2XK54oPUGjH1l9AflBdrIQheVn_oeBEekl29yPCY0USKNAgmhEgbnvVTEoQhciSCUAO6ekL7ZmHXR5MVYt3ty-nf3GdkzwmloVuekV21rvNCAXqWXVpKfTl2jDg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCIUztxEjIxVKAWmqqCInVAqpz4jCIgrZpk4ddjO6EIxMBmWZZs-Xx-Z9-7O4QuZCB54OnXiaLyinBXRESwNCU89RWXnLkBmEDheBwMnvjdzJ-10OU6FgYALPkMHNO0vny5SCvzVdazudI9fwNtatz3WR2t1bgqGY16k4fx0LC1uNOM_FEyxSLG7Q6Kv-aqiSKvTlUmTvrxKw3jfxezi7rfsXl4skadPdSCvIOeH-E9I0W1NJpfgMRNMYgXnOU47g9JuSBCYksxt_9jeLkyHhojFUywvpFznBW4yvWZ0DgksSGO4qoAVb1dd9H09mbaH5CmbgLJIlqSUGpVgkhpU0f40uUQWbvPVSGTttgO5Yp72nKA0FXGglDM088soKDcxGXS20ftfJHDAcKREkngpdJXwiA9S0ToC4-mIIUSktND1DEbM1_WmTHmzZ4c_d19jrYG03g0Hw3H98do2wiqJl2doHa5quBUw3uZnFmpfgL_RaZX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Workshop+on+Pattern+Recognition+in+Neuroimaging&rft.atitle=Semi-supervised+learning+in+MCI-to-ad+conversion+prediction+-+When+is+unlabeled+data+useful%3F&rft.au=Moradi%2C+Elaheh&rft.au=Tohka%2C+Jussi&rft.au=Gaser%2C+Christian&rft.date=2014-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FPRNI.2014.6858535&rft.externalDocID=6858535