Semi-supervised learning in MCI-to-ad conversion prediction - When is unlabeled data useful?
This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients based on Magnetic Resonance Imaging (MRI). SSL methods differ from standard supervised learning methods in that they make use of unlabeled d...
Saved in:
Published in | 2014 International Workshop on Pattern Recognition in Neuroimaging pp. 1 - 4 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients based on Magnetic Resonance Imaging (MRI). SSL methods differ from standard supervised learning methods in that they make use of unlabeled data - in this case data from MCI subjects whose final diagnosis is not yet known. We compare two widely used semi-supervised methods (low density separation (LDS) and semi-supervised discriminant analysis (SDA)) to the corresponding supervised methods using real and synthetic MRI data of MCI subjects. With simulated data, using SSL instead of supervised learning led to higher classification performance in certain cases, however, the applicability of semi-supervised methods depended strongly on the data distributions. With real MRI data, the SSL methods achieved significantly better classification performances over supervised methods. Moreover, even using a small number of unlabeled samples improved the AD conversion predictions. |
---|---|
AbstractList | This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients based on Magnetic Resonance Imaging (MRI). SSL methods differ from standard supervised learning methods in that they make use of unlabeled data - in this case data from MCI subjects whose final diagnosis is not yet known. We compare two widely used semi-supervised methods (low density separation (LDS) and semi-supervised discriminant analysis (SDA)) to the corresponding supervised methods using real and synthetic MRI data of MCI subjects. With simulated data, using SSL instead of supervised learning led to higher classification performance in certain cases, however, the applicability of semi-supervised methods depended strongly on the data distributions. With real MRI data, the SSL methods achieved significantly better classification performances over supervised methods. Moreover, even using a small number of unlabeled samples improved the AD conversion predictions. |
Author | Moradi, Elaheh Tohka, Jussi Gaser, Christian |
Author_xml | – sequence: 1 givenname: Elaheh surname: Moradi fullname: Moradi, Elaheh email: elaheh.moradi@tut.fi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 2 givenname: Jussi surname: Tohka fullname: Tohka, Jussi organization: Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland – sequence: 3 givenname: Christian surname: Gaser fullname: Gaser, Christian organization: Dept. of Psychiatry, Univ. of Jena, Jena, Germany |
BookMark | eNotj8tKAzEYRiPoQmsfQNzkBVL_XGYyWYkMagfqBS24EUqm-aOBaWZIZgq-vRW7Ot_mfHAuyGnsIxJyxWHBOZib17fnZiGAq0VZFVUhixMyN7riShujuDJwTj7fcRdYngZM-5DR0Q5tiiF-0RDpU92wsWfW0W0f95hy6CMdErqwHf8mox_fGGnIdIqdbbE7-M6Olk4Z_dTdXpIzb7uM8yNnZP1wv66XbPXy2NR3KxYMjEy7FgCNF6WyhRMKDQDnhfCaOyhMKUB5JbWSqIWHAz2XXAECetEK7uSMXP_fBkTcDCnsbPrZHJPlL8TBTvg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PRNI.2014.6858535 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781479941490 9781479941506 1479941506 1479941492 |
EndPage | 4 |
ExternalDocumentID | 6858535 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-7db00e9f264a5d24e9001152f71d0596204f43743e72f0743f13140e0ef2b21d3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:45 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-7db00e9f264a5d24e9001152f71d0596204f43743e72f0743f13140e0ef2b21d3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6858535 |
PublicationCentury | 2000 |
PublicationDate | 2014-June |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-June |
PublicationDecade | 2010 |
PublicationTitle | 2014 International Workshop on Pattern Recognition in Neuroimaging |
PublicationTitleAbbrev | PRNI |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.575153 |
Snippet | This paper investigates the use of semi-supervised learning (SSL) for predicting Alzheimers Disease (AD) conversion in Mild Cognitive Impairment (MCI) patients... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Alzheimer's disease Magnetic resonance imaging Neuroimaging Semisupervised learning Support vector machines Training |
Title | Semi-supervised learning in MCI-to-ad conversion prediction - When is unlabeled data useful? |
URI | https://ieeexplore.ieee.org/document/6858535 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDyarh9pa08ehmMTNoZO2EEYad6LFLUra3vxrzdJ60Tx4C2EQEJekt97eb_3HiFXEAGPAm2dKBduGPdFwoQnJeMyVBy450doAoVn82jyxO9X4apDrnexMIhoyWfomKb15cNG1uarbGhzpQdhl3S14dbEarWOSs9NhouH-dRwtbjTjvtRMMXixXifzL5mamgir05dpY78-JWE8b9LOSCD78g8uthhziHpYN4nz4_4nrGyLsy9LxFoWwrihWY5nY2mrNowAdQSzO3vGC22xj9jZEIZ1e9xTrOS1rk-ERqFgBraKK1LVPXb7YAsx3fL0YS1VRNYlrgVi0FfJEyUVnRECD7HxGp9voo9sKV2XK54oPUGjH1l9AflBdrIQheVn_oeBEekl29yPCY0USKNAgmhEgbnvVTEoQhciSCUAO6ekL7ZmHXR5MVYt3ty-nf3GdkzwmloVuekV21rvNCAXqWXVpKfTl2jDg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCIUztxEjIxVKAWmqqCInVAqpz4jCIgrZpk4ddjO6EIxMBmWZZs-Xx-Z9-7O4QuZCB54OnXiaLyinBXRESwNCU89RWXnLkBmEDheBwMnvjdzJ-10OU6FgYALPkMHNO0vny5SCvzVdazudI9fwNtatz3WR2t1bgqGY16k4fx0LC1uNOM_FEyxSLG7Q6Kv-aqiSKvTlUmTvrxKw3jfxezi7rfsXl4skadPdSCvIOeH-E9I0W1NJpfgMRNMYgXnOU47g9JuSBCYksxt_9jeLkyHhojFUywvpFznBW4yvWZ0DgksSGO4qoAVb1dd9H09mbaH5CmbgLJIlqSUGpVgkhpU0f40uUQWbvPVSGTttgO5Yp72nKA0FXGglDM088soKDcxGXS20ftfJHDAcKREkngpdJXwiA9S0ToC4-mIIUSktND1DEbM1_WmTHmzZ4c_d19jrYG03g0Hw3H98do2wiqJl2doHa5quBUw3uZnFmpfgL_RaZX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Workshop+on+Pattern+Recognition+in+Neuroimaging&rft.atitle=Semi-supervised+learning+in+MCI-to-ad+conversion+prediction+-+When+is+unlabeled+data+useful%3F&rft.au=Moradi%2C+Elaheh&rft.au=Tohka%2C+Jussi&rft.au=Gaser%2C+Christian&rft.date=2014-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FPRNI.2014.6858535&rft.externalDocID=6858535 |