Sleep stage classification of sleep apnea patients using decision-tree-based support vector machines based on ECG parameters

This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a sequential forward selection (SFS) feature selection method and a decision-tree-based support vector machines (DTB-SVM) classifier for discrim...

Full description

Saved in:
Bibliographic Details
Published inProceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics pp. 285 - 288
Main Authors Jeen-Shing Wang, Guan-Rong Shih, Wei-Chun Chiang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a sequential forward selection (SFS) feature selection method and a decision-tree-based support vector machines (DTB-SVM) classifier for discriminating three types of sleep based on electrocardiogram (ECG) signals. Each 5-minute epoch of ECG signal data collected during sleep was used to generate 24 features using heart rate variability (HRV) analysis. An SFS feature selection method was then employed to determine which significant features should be selected to improve classification accuracy. A DTB-SVM was then trained using selected features in order to discriminate three sleep stages, including pre-sleep wakefulness, NREM sleep and REM sleep. The average classification accuracy of the proposed strategy was 73.51%. Our experimental results demonstrate that the proposed strategy provides moderate accuracy for detecting sleep stages in sleep apnea patients and can serve as a convenient tool for assessing sleep quality.
AbstractList This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a sequential forward selection (SFS) feature selection method and a decision-tree-based support vector machines (DTB-SVM) classifier for discriminating three types of sleep based on electrocardiogram (ECG) signals. Each 5-minute epoch of ECG signal data collected during sleep was used to generate 24 features using heart rate variability (HRV) analysis. An SFS feature selection method was then employed to determine which significant features should be selected to improve classification accuracy. A DTB-SVM was then trained using selected features in order to discriminate three sleep stages, including pre-sleep wakefulness, NREM sleep and REM sleep. The average classification accuracy of the proposed strategy was 73.51%. Our experimental results demonstrate that the proposed strategy provides moderate accuracy for detecting sleep stages in sleep apnea patients and can serve as a convenient tool for assessing sleep quality.
Author Wei-Chun Chiang
Jeen-Shing Wang
Guan-Rong Shih
Author_xml – sequence: 1
  surname: Jeen-Shing Wang
  fullname: Jeen-Shing Wang
– sequence: 2
  surname: Guan-Rong Shih
  fullname: Guan-Rong Shih
– sequence: 3
  surname: Wei-Chun Chiang
  fullname: Wei-Chun Chiang
BookMark eNpVkM1PAjEQxWvERETuJl76Dyz2Y7cfR90gkJB4kDsp7SzWQHezU0xM_OPdCBffZebNm_wO746MUpuAkAfOZpwz-_SyXM0E42KmBOeV0ldkarXhZaW14Frb639eiREZC1XyQlaW3ZIp4icbpJkwnI3Jz_sBoKOY3R6oPzjE2ETvcmwTbRuKf6nrEjjaDVdIGekJY9rTAD7i8FbkHqDYOYRA8dR1bZ_pF_jc9vTo_EdMgPScDsh5vRg4vTtChh7vyU3jDgjTy5yQzet8Uy-L9dtiVT-vi2hZLnRwtqmUBVMJU0phG68ap4UXUjMbQOhQhp00zHprtAlKumFVXgSmVcWsnJDHMzYCwLbr49H139tLffIXIZlkCA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BHI.2012.6211567
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9781457721779
1457721775
9781457721755
1457721759
EndPage 288
ExternalDocumentID 6211567
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-7da9f569e85284329fc6fa72c23709de27d4db3809c9878d63a09c6c2d0765093
IEDL.DBID RIE
ISBN 9781457721762
1457721767
ISSN 2641-3590
IngestDate Wed Sep 03 07:10:03 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7da9f569e85284329fc6fa72c23709de27d4db3809c9878d63a09c6c2d0765093
PageCount 4
ParticipantIDs ieee_primary_6211567
PublicationCentury 2000
PublicationDate 2012-Jan.
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-Jan.
PublicationDecade 2010
PublicationTitle Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics
PublicationTitleAbbrev BHI
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000702810
ssj0003320736
Score 1.5176395
Snippet This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a...
SourceID ieee
SourceType Publisher
StartPage 285
SubjectTerms Accuracy
Electrocardiography
Feature extraction
Heart rate variability
Noise measurement
Rapid eye movement sleep
Recording
Sleep apnea
Time-domain analysis
Time-frequency analysis
Title Sleep stage classification of sleep apnea patients using decision-tree-based support vector machines based on ECG parameters
URI https://ieeexplore.ieee.org/document/6211567
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECa1B-PJR2t8h4NHaSkssFxtWqtJjYk16a2hMNsY7SNu68H44wV2W6Px4A2WZB9Adj5mvvkGoctEOyWpYSQxLqTk0ISkAiyhoDOZGAMuqu3372XvKbkbimEFXW1yYQAgks-gEZoxlu_mdhVcZU3pTytCqi205Q9uRa7Wxp_ity5bS2uFPufM795YW04mLcKFpjGvS3g42VJSreWeyj5bhzCpbl73bgPnizXK5_0ovBLtTncX9ddvXNBNXhqr5bhhP36JOf73k_ZQ_TvDDz9sbNc-qsDsAG33y0B7DX0-vgIssIeOE8A2IOxAKYqriOcZzuOoWczA4FKZNceBQj_BrizaQ0K4mwQj6XC-WgSYj99jiABPI4ETclyM-lt22jc4iJBPAzknr6NBtzNo90hZqIE8a7okyhmdCakhFd7YcaYzKzOjmGVcUe2AKZe4MU-ptjpVqZPc-Ka0zFEVBPz4IarO5jM4QngM4H8QqbSZ4YkGm4LUzjmhPFJjqaDHqBbmcLQopDhG5fSd_H35FO2EdSw8JmeounxbwbnHEMvxRdw8Xysov60
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYJODE0iJ2fOCIW9eO7fgKKrRAERJF6q1y7QlCQFuRlgPi47GdtAjEgZsdS0m8KPMy8-YNQieJdkpSw0hiXEjJoQlJBVhCQWcyMQZcVNvv3MrWQ3LVE70FdDrPhQGASD6DWmjGWL4b2WlwldWl_1sRUi2iZW_3RaPI1pp7VPzhZTNxrdDnnPnzG6vLyaRBuNA0ZnYJDygbSqqZ4FPZZ7MgJtX1s1Y7sL5YrXzij9Ir0fJcrKPO7J0LwslzbToZ1OzHLznH_05qA1W_c_zw3dx6baIFGG6hlU4Zaq-gz_sXgDH24PERsA0YO5CK4j7iUYbzOGrGQzC41GbNcSDRP2JXlu0hIeBNgpl0OJ-OA9DH7zFIgF8jhRNyXIz6WzbPL3GQIX8N9Jy8iroXze55i5SlGsiTphOinNGZkBpS4c0dZzqzMjOKWcYV1Q6Ycokb8JRqq1OVOsmNb0rLHFVBwo9vo6XhaAg7CA8A_CcilTYzPNFgU5DaOSeUx2osFXQXVcIa9seFGEe_XL69vy8fo9VWt3PTv2nfXu-jtbCnhf_kAC1N3qZw6BHFZHAUD9IXXhfC9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+2012+IEEE-EMBS+International+Conference+on+Biomedical+and+Health+Informatics&rft.atitle=Sleep+stage+classification+of+sleep+apnea+patients+using+decision-tree-based+support+vector+machines+based+on+ECG+parameters&rft.au=Jeen-Shing+Wang&rft.au=Guan-Rong+Shih&rft.au=Wei-Chun+Chiang&rft.date=2012-01-01&rft.pub=IEEE&rft.isbn=9781457721762&rft.issn=2641-3590&rft.spage=285&rft.epage=288&rft_id=info:doi/10.1109%2FBHI.2012.6211567&rft.externalDocID=6211567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2641-3590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2641-3590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2641-3590&client=summon