Sleep stage classification of sleep apnea patients using decision-tree-based support vector machines based on ECG parameters
This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a sequential forward selection (SFS) feature selection method and a decision-tree-based support vector machines (DTB-SVM) classifier for discrim...
Saved in:
Published in | Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics pp. 285 - 288 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a sequential forward selection (SFS) feature selection method and a decision-tree-based support vector machines (DTB-SVM) classifier for discriminating three types of sleep based on electrocardiogram (ECG) signals. Each 5-minute epoch of ECG signal data collected during sleep was used to generate 24 features using heart rate variability (HRV) analysis. An SFS feature selection method was then employed to determine which significant features should be selected to improve classification accuracy. A DTB-SVM was then trained using selected features in order to discriminate three sleep stages, including pre-sleep wakefulness, NREM sleep and REM sleep. The average classification accuracy of the proposed strategy was 73.51%. Our experimental results demonstrate that the proposed strategy provides moderate accuracy for detecting sleep stages in sleep apnea patients and can serve as a convenient tool for assessing sleep quality. |
---|---|
AbstractList | This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a sequential forward selection (SFS) feature selection method and a decision-tree-based support vector machines (DTB-SVM) classifier for discriminating three types of sleep based on electrocardiogram (ECG) signals. Each 5-minute epoch of ECG signal data collected during sleep was used to generate 24 features using heart rate variability (HRV) analysis. An SFS feature selection method was then employed to determine which significant features should be selected to improve classification accuracy. A DTB-SVM was then trained using selected features in order to discriminate three sleep stages, including pre-sleep wakefulness, NREM sleep and REM sleep. The average classification accuracy of the proposed strategy was 73.51%. Our experimental results demonstrate that the proposed strategy provides moderate accuracy for detecting sleep stages in sleep apnea patients and can serve as a convenient tool for assessing sleep quality. |
Author | Wei-Chun Chiang Jeen-Shing Wang Guan-Rong Shih |
Author_xml | – sequence: 1 surname: Jeen-Shing Wang fullname: Jeen-Shing Wang – sequence: 2 surname: Guan-Rong Shih fullname: Guan-Rong Shih – sequence: 3 surname: Wei-Chun Chiang fullname: Wei-Chun Chiang |
BookMark | eNpVkM1PAjEQxWvERETuJl76Dyz2Y7cfR90gkJB4kDsp7SzWQHezU0xM_OPdCBffZebNm_wO746MUpuAkAfOZpwz-_SyXM0E42KmBOeV0ldkarXhZaW14Frb639eiREZC1XyQlaW3ZIp4icbpJkwnI3Jz_sBoKOY3R6oPzjE2ETvcmwTbRuKf6nrEjjaDVdIGekJY9rTAD7i8FbkHqDYOYRA8dR1bZ_pF_jc9vTo_EdMgPScDsh5vRg4vTtChh7vyU3jDgjTy5yQzet8Uy-L9dtiVT-vi2hZLnRwtqmUBVMJU0phG68ap4UXUjMbQOhQhp00zHprtAlKumFVXgSmVcWsnJDHMzYCwLbr49H139tLffIXIZlkCA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BHI.2012.6211567 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISBN | 9781457721779 1457721775 9781457721755 1457721759 |
EndPage | 288 |
ExternalDocumentID | 6211567 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-7da9f569e85284329fc6fa72c23709de27d4db3809c9878d63a09c6c2d0765093 |
IEDL.DBID | RIE |
ISBN | 9781457721762 1457721767 |
ISSN | 2641-3590 |
IngestDate | Wed Sep 03 07:10:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-7da9f569e85284329fc6fa72c23709de27d4db3809c9878d63a09c6c2d0765093 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6211567 |
PublicationCentury | 2000 |
PublicationDate | 2012-Jan. |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-Jan. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics |
PublicationTitleAbbrev | BHI |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000702810 ssj0003320736 |
Score | 1.5176395 |
Snippet | This paper describes the design and validation of an effective sleep stage classification strategy for patients with sleep apnea. This strategy consists of a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 285 |
SubjectTerms | Accuracy Electrocardiography Feature extraction Heart rate variability Noise measurement Rapid eye movement sleep Recording Sleep apnea Time-domain analysis Time-frequency analysis |
Title | Sleep stage classification of sleep apnea patients using decision-tree-based support vector machines based on ECG parameters |
URI | https://ieeexplore.ieee.org/document/6211567 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECa1B-PJR2t8h4NHaSkssFxtWqtJjYk16a2hMNsY7SNu68H44wV2W6Px4A2WZB9Adj5mvvkGoctEOyWpYSQxLqTk0ISkAiyhoDOZGAMuqu3372XvKbkbimEFXW1yYQAgks-gEZoxlu_mdhVcZU3pTytCqi205Q9uRa7Wxp_ity5bS2uFPufM795YW04mLcKFpjGvS3g42VJSreWeyj5bhzCpbl73bgPnizXK5_0ovBLtTncX9ddvXNBNXhqr5bhhP36JOf73k_ZQ_TvDDz9sbNc-qsDsAG33y0B7DX0-vgIssIeOE8A2IOxAKYqriOcZzuOoWczA4FKZNceBQj_BrizaQ0K4mwQj6XC-WgSYj99jiABPI4ETclyM-lt22jc4iJBPAzknr6NBtzNo90hZqIE8a7okyhmdCakhFd7YcaYzKzOjmGVcUe2AKZe4MU-ptjpVqZPc-Ka0zFEVBPz4IarO5jM4QngM4H8QqbSZ4YkGm4LUzjmhPFJjqaDHqBbmcLQopDhG5fSd_H35FO2EdSw8JmeounxbwbnHEMvxRdw8Xysov60 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYJODE0iJ2fOCIW9eO7fgKKrRAERJF6q1y7QlCQFuRlgPi47GdtAjEgZsdS0m8KPMy8-YNQieJdkpSw0hiXEjJoQlJBVhCQWcyMQZcVNvv3MrWQ3LVE70FdDrPhQGASD6DWmjGWL4b2WlwldWl_1sRUi2iZW_3RaPI1pp7VPzhZTNxrdDnnPnzG6vLyaRBuNA0ZnYJDygbSqqZ4FPZZ7MgJtX1s1Y7sL5YrXzij9Ir0fJcrKPO7J0LwslzbToZ1OzHLznH_05qA1W_c_zw3dx6baIFGG6hlU4Zaq-gz_sXgDH24PERsA0YO5CK4j7iUYbzOGrGQzC41GbNcSDRP2JXlu0hIeBNgpl0OJ-OA9DH7zFIgF8jhRNyXIz6WzbPL3GQIX8N9Jy8iroXze55i5SlGsiTphOinNGZkBpS4c0dZzqzMjOKWcYV1Q6Ycokb8JRqq1OVOsmNb0rLHFVBwo9vo6XhaAg7CA8A_CcilTYzPNFgU5DaOSeUx2osFXQXVcIa9seFGEe_XL69vy8fo9VWt3PTv2nfXu-jtbCnhf_kAC1N3qZw6BHFZHAUD9IXXhfC9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+2012+IEEE-EMBS+International+Conference+on+Biomedical+and+Health+Informatics&rft.atitle=Sleep+stage+classification+of+sleep+apnea+patients+using+decision-tree-based+support+vector+machines+based+on+ECG+parameters&rft.au=Jeen-Shing+Wang&rft.au=Guan-Rong+Shih&rft.au=Wei-Chun+Chiang&rft.date=2012-01-01&rft.pub=IEEE&rft.isbn=9781457721762&rft.issn=2641-3590&rft.spage=285&rft.epage=288&rft_id=info:doi/10.1109%2FBHI.2012.6211567&rft.externalDocID=6211567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2641-3590&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2641-3590&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2641-3590&client=summon |