Channel Selection of EEG Emotion Recognition using Stepwise Discriminant Analysis
EEG has been used by many applications recently, not only in the field of medicine but also telemarketing, games, and cybernetics. Measuring brain signal by involving EEG is complicated and delicate work because it involves many channels, frequency bands, and features. An efficient and effective met...
Saved in:
Published in | 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) pp. 14 - 19 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CENIM.2018.8711196 |
Cover
Abstract | EEG has been used by many applications recently, not only in the field of medicine but also telemarketing, games, and cybernetics. Measuring brain signal by involving EEG is complicated and delicate work because it involves many channels, frequency bands, and features. An efficient and effective method in EEG measurement is then becoming crucial among the scientists. This paper proposed a channel selection study for emotion recognition based on the EEG signal by using Stepwise Discriminant Analysis (SDA). SDA is the extension of statistical tool for discriminant analysis that include stepwise technique. In this paper, the data was obtained from the public emotion EEG dataset which was recorded using 62 channels of EEG devices for three target emotions (i.e., positive, negative and neutral). In order to handle high dimensionality in EEG signals, we extracted differential entropy feature from five frequency bands: delta, theta, alpha, beta, and gamma. The selection criteria in SDA was based on Wilks Lambda score to get the optimal channel. In order to measure the performance of selected channels, we fed the features vector of the EEG signal to the LDA classifier. We conducted several scenarios from the different number of selected channels in experiments, such as 3, 4, 7, and 15 channels. The highest accuracy of 99.85% was obtained from 15 channels scenario in all combinations of frequency bands. Our results also confirm that alpha, beta, and gamma frequency bands are reliable for EEG emotion recognition. |
---|---|
AbstractList | EEG has been used by many applications recently, not only in the field of medicine but also telemarketing, games, and cybernetics. Measuring brain signal by involving EEG is complicated and delicate work because it involves many channels, frequency bands, and features. An efficient and effective method in EEG measurement is then becoming crucial among the scientists. This paper proposed a channel selection study for emotion recognition based on the EEG signal by using Stepwise Discriminant Analysis (SDA). SDA is the extension of statistical tool for discriminant analysis that include stepwise technique. In this paper, the data was obtained from the public emotion EEG dataset which was recorded using 62 channels of EEG devices for three target emotions (i.e., positive, negative and neutral). In order to handle high dimensionality in EEG signals, we extracted differential entropy feature from five frequency bands: delta, theta, alpha, beta, and gamma. The selection criteria in SDA was based on Wilks Lambda score to get the optimal channel. In order to measure the performance of selected channels, we fed the features vector of the EEG signal to the LDA classifier. We conducted several scenarios from the different number of selected channels in experiments, such as 3, 4, 7, and 15 channels. The highest accuracy of 99.85% was obtained from 15 channels scenario in all combinations of frequency bands. Our results also confirm that alpha, beta, and gamma frequency bands are reliable for EEG emotion recognition. |
Author | Pumomo, Mauridhi Hery Pane, Evi Septiana Wibawa, Adhi Dharma |
Author_xml | – sequence: 1 givenname: Evi Septiana surname: Pane fullname: Pane, Evi Septiana organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia – sequence: 2 givenname: Adhi Dharma surname: Wibawa fullname: Wibawa, Adhi Dharma organization: Departement of Electrical Engineering & Departement of Computer Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia – sequence: 3 givenname: Mauridhi Hery surname: Pumomo fullname: Pumomo, Mauridhi Hery organization: Departement of Electrical Engineering & Departement of Computer Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
BookMark | eNotj8tOwzAURI0ECyj9Adj4BxJ87fi1rIIplQoI2n2V2DfFUupUdRDq31OVrmbO5mjmjlynISEhD8BKAGafave-eCs5A1MaDQBWXZGp1QakMEpLZtkt-ay_m5Swpyvs0Y9xSHToqHNz6nbDGb_QD9sUz_0nx7SlqxH3vzEjfY7ZH-IupiaNdJaa_phjvic3XdNnnF5yQtYvbl2_FsuP-aKeLYto2VjoABW2Fj0KKys0NhivWGi55ugDKCbB6CCsaVXL2057BG5C1VVBcnFiMSGP_9qIiJv9aUZzOG4uP8Ufsu1NWQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CENIM.2018.8711196 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538675090 1538675099 |
EndPage | 19 |
ExternalDocumentID | 8711196 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-7d14eb9ece3954e89d8c60db272ecd1605187d398b6b2bf7ce128d4f4d523bf73 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:20 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-7d14eb9ece3954e89d8c60db272ecd1605187d398b6b2bf7ce128d4f4d523bf73 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8711196 |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov. |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) |
PublicationTitleAbbrev | CENIM |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6911429 |
Snippet | EEG has been used by many applications recently, not only in the field of medicine but also telemarketing, games, and cybernetics. Measuring brain signal by... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 14 |
SubjectTerms | brain signal Covariance matrices electrode selection Electroencephalography Emotion recognition Entropy Feature extraction Frequency measurement identifying emotion Signal processing algorithms Wilks lambda |
Title | Channel Selection of EEG Emotion Recognition using Stepwise Discriminant Analysis |
URI | https://ieeexplore.ieee.org/document/8711196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdm2Ttsl5dk5hwx8TdhtN8iJD6YZ2CP71Ju06UTx4S0Ig4SXky0u-7z2AC4XUqNj9qUvKPIv4wpNKCk9FXKkk50aGTig8niSjJ3Y7i2ctuNxqYRCxIp-h74rVX75eqrV7Kuvby31od0wb2nab1VqtRgcTiP4gm9yMHVmL-5uOPzKmVIAx3IVxM1TNE3nx16X01eevKIz_ncse9L6leeRuCzr70MKiC_dOI1DgK3msstpYU5OlIVl2TbI6Sw95aHhCtuyo7s_E0bs-Fu9Irhbu5KgZMaSJUdKD6TCbDkbeJleCtxBB6aU6ZCgFWtOLmCEXmqsk0DJKI1Q6tD5LyFNNBZeJjKRJFVpc0swwbR1RW6cH0CmWBR4CobmK08DkPKeaoRbSeiAxVUbTmFHbeARdZ435qo6GMd8Y4vjv5hPYcStSq_dOoVO-rfHMwngpz6v1-wK6T6EN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFH6Z86AnNZvxtxw82q4dtIXz7Jy6Lv6YyW5LgVezaDqjXUz864V2ndF48AaEBPIgfDz4vvcAzhTSTAX2T11S5hjEF45UUjiqy5UKU55J3wqFk1E4eGTXk2DSgPOVFgYRS_IZurZY_uXruVrYp7KOudz7ZseswbrBfRZUaq1aCeOJTi8eXSWWrsXdZdcfOVNKyOhvQVIPVjFFnt1FIV31-SsO439nsw3tb3EeuV3Bzg40MG_BnVUJ5PhCHsq8NsbYZJ6ROL4kcZWnh9zXTCFTtmT3J2IJXh-zdyQXM3t2VJwYUkcpacO4H497A2eZLcGZCa9wIu0zlAKN8UXAkAvNVehp2Y26qLRvvBafR5oKLkPZlVmk0CCTZhnTxhU1dboLzXye4x4Qmqog8rKUp1Qz1EIaHySgKtM0YNQ07kPLWmP6WsXDmC4NcfB38ylsDMbJcDq8Gt0cwqZdnUrLdwTN4m2BxwbUC3lSruUXV3ukWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Conference+on+Computer+Engineering%2C+Network+and+Intelligent+Multimedia+%28CENIM%29&rft.atitle=Channel+Selection+of+EEG+Emotion+Recognition+using+Stepwise+Discriminant+Analysis&rft.au=Pane%2C+Evi+Septiana&rft.au=Wibawa%2C+Adhi+Dharma&rft.au=Pumomo%2C+Mauridhi+Hery&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=14&rft.epage=19&rft_id=info:doi/10.1109%2FCENIM.2018.8711196&rft.externalDocID=8711196 |