MRI fuzzy segmentation of brain tissue using IFCM algorithm with particle swarm optimization

Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of particular importance for further image analysis. Fuzzy c-mean (FCM) is a common clustering algorithm which is used for segmentation of MR image...

Full description

Saved in:
Bibliographic Details
Published in2007 22nd International Symposium on Computer and Information Sciences pp. 1 - 4
Main Authors Forghani, N., Forouzanfar, M., Forouzanfar, E.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2007
Subjects
Online AccessGet full text
ISBN142441363X
9781424413638
DOI10.1109/ISCIS.2007.4456869

Cover

Abstract Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of particular importance for further image analysis. Fuzzy c-mean (FCM) is a common clustering algorithm which is used for segmentation of MR images. However in the case of noisy MR images, efficiency of this algorithm considerably reduces. Recently, researchers have introduced two new parameters in order to improve the performance of traditional FCM in the case of noisy images. New parameters are computed using artificial neural networks and through a complex and time consuming optimization problem. In this paper, we present a new method for computation of these two parameters, efficiently. We use a particle swarm optimization (PSO) method and show the capability of PSO to find optimal values of these parameters. The advantage of the new proposed method is its simplified computations. Our simulation results on a set of noisy MR images, demonstrate the effectiveness of proposed optimization method compared with some related recent algorithms.
AbstractList Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of particular importance for further image analysis. Fuzzy c-mean (FCM) is a common clustering algorithm which is used for segmentation of MR images. However in the case of noisy MR images, efficiency of this algorithm considerably reduces. Recently, researchers have introduced two new parameters in order to improve the performance of traditional FCM in the case of noisy images. New parameters are computed using artificial neural networks and through a complex and time consuming optimization problem. In this paper, we present a new method for computation of these two parameters, efficiently. We use a particle swarm optimization (PSO) method and show the capability of PSO to find optimal values of these parameters. The advantage of the new proposed method is its simplified computations. Our simulation results on a set of noisy MR images, demonstrate the effectiveness of proposed optimization method compared with some related recent algorithms.
Author Forouzanfar, E.
Forouzanfar, M.
Forghani, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Forghani
  fullname: Forghani, N.
  organization: K.N. Toosi Univ. of Technol., Tehran
– sequence: 2
  givenname: M.
  surname: Forouzanfar
  fullname: Forouzanfar, M.
  organization: K.N. Toosi Univ. of Technol., Tehran
– sequence: 3
  givenname: E.
  surname: Forouzanfar
  fullname: Forouzanfar, E.
BookMark eNo1kMtOwzAURI0ACVr6A7DxD6TY8bXjLFFEIVIrJNoFC6TKSa-DUV6KHVXt11NBmcUZzeYsZkKu2q5FQu45m3PO0sd8neXrecxYMgeQSqv0gszSRHOIAbhQIC_J5H-Ijxsy8_6bnQISYilvyefqPad2PB4P1GPVYBtMcF1LO0uLwbiWBuf9iHT0rq1ovshW1NRVN7jw1dD9ibQ3Q3BljdTvzdDQrg-uccdfyx25tqb2ODv3lGwWz5vsNVq-veTZ0zJyKQtRIosdGtAlJCeInWTGirgslBFWWKVTUDFIVIKBRih5GReJTVFozbXlOyam5OFP6xBx2w-uMcNhe_5D_ABWIFb1
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCIS.2007.4456869
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424413645
1424413648
EndPage 4
ExternalDocumentID 4456869
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-75bdea48c4748c3d50af32cb6a3f3f68946245e63048e4c1c2b7f9e38818f1d03
IEDL.DBID RIE
ISBN 142441363X
9781424413638
IngestDate Wed Aug 27 01:54:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-75bdea48c4748c3d50af32cb6a3f3f68946245e63048e4c1c2b7f9e38818f1d03
PageCount 4
ParticipantIDs ieee_primary_4456869
PublicationCentury 2000
PublicationDate 2007-Nov.
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-Nov.
PublicationDecade 2000
PublicationTitle 2007 22nd International Symposium on Computer and Information Sciences
PublicationTitleAbbrev ISCIS
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454255
Score 1.4576422
Snippet Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biomedical imaging
Brain
Clustering algorithms
Computer networks
Image analysis
Image segmentation
Magnetic noise
Magnetic resonance imaging
Noise reduction
Particle swarm optimization
Title MRI fuzzy segmentation of brain tissue using IFCM algorithm with particle swarm optimization
URI https://ieeexplore.ieee.org/document/4456869
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzarW3StD0PxypMxE3YQRhJmsyhbcfWIu6v96UfE8WDl9KEUkLykveR9_s9hG6oBLeKcvBOVEgtGoTc4kISK4DPBQi1By2TbfHAxs_0fu7NW-h2j4VRSpXJZ6pvXsu7_DiThQmVDSho-4CFbdQGMauwWvt4iqGSA_O4wW45hJF5Q-lUt4MGNGOHg2g6jKYVg2H91x_lVUrtMjpEk2ZcVVLJW7_IRV_uflE2_nfgR6j3jePDj3sNdYxaKu2il8lThHWx233irVomNfYoxZnGwtSLwHm5FthkxC9xNBpOMH9fZptV_ppgE7bF61rc8PaDbxKcwamT1HDOHpqN7mbDsVXXWLBWoZ1bvidixWkgqQ8PEns218SVgnGiiWZBSJlLPcUIbHRFpSNd4etQkQD0vHZim5ygTpql6hRhcOYY13CAgsVIfZcGMdiisaO1S5l0tX-GumZiFuuKRWNRz8n5390X6KCMopaov0vUyTeFugL1n4vrct2_AGbjrHs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetCTmtb47R48SgvsssC5sSlaGmNr0oNJsyy7tVGgaSHG_nqHrxqNBy-EJYRslmHfzDDvDUI3VEBYRTlEJ9KlGnVcrvFAEM2B2wMwagtGebXFiA2e6f3UmjbQ7ZYLI6Usis9kJz8t_uWHicjyVFmXAto7zN1Bu4D71CrZWtuMSi4mBw5yzd4yCCPTWtSpGjs1bUZ3u964541LDcPquT8arBT40j9Afj2zsqzkrZOlQUdsfok2_nfqh6j9zeTDj1uMOkINGbfQi__kYZVtNp94LedRxT6KcaJwkHeMwGnxNnBeEz_HXr_nY_4-T1aL9DXCeeIWLyuDw-sPvopwAvtOVBE622jSv5v0BlrVZUFbuHqq2VYQSk4dQW04kNDSuSKmCBgniijmuJSZ1JKMwKcuqTCEGdjKlcQBpFdGqJNj1IyTWJ4gDOEc4wq2UPAZqW1SJwRvNDSUMikTprJPUStfmNmy1NGYVWty9vfla7Q3mPjD2dAbPZyj_SKnWnAAL1AzXWXyEpyBNLgqbOALos-vyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+22nd+International+Symposium+on+Computer+and+Information+Sciences&rft.atitle=MRI+fuzzy+segmentation+of+brain+tissue+using+IFCM+algorithm+with+particle+swarm+optimization&rft.au=Forghani%2C+N.&rft.au=Forouzanfar%2C+M.&rft.au=Forouzanfar%2C+E.&rft.date=2007-11-01&rft.pub=IEEE&rft.isbn=9781424413638&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISCIS.2007.4456869&rft.externalDocID=4456869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424413638/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424413638/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424413638/sc.gif&client=summon&freeimage=true