MRI fuzzy segmentation of brain tissue using IFCM algorithm with particle swarm optimization
Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of particular importance for further image analysis. Fuzzy c-mean (FCM) is a common clustering algorithm which is used for segmentation of MR image...
Saved in:
Published in | 2007 22nd International Symposium on Computer and Information Sciences pp. 1 - 4 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 142441363X 9781424413638 |
DOI | 10.1109/ISCIS.2007.4456869 |
Cover
Abstract | Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of particular importance for further image analysis. Fuzzy c-mean (FCM) is a common clustering algorithm which is used for segmentation of MR images. However in the case of noisy MR images, efficiency of this algorithm considerably reduces. Recently, researchers have introduced two new parameters in order to improve the performance of traditional FCM in the case of noisy images. New parameters are computed using artificial neural networks and through a complex and time consuming optimization problem. In this paper, we present a new method for computation of these two parameters, efficiently. We use a particle swarm optimization (PSO) method and show the capability of PSO to find optimal values of these parameters. The advantage of the new proposed method is its simplified computations. Our simulation results on a set of noisy MR images, demonstrate the effectiveness of proposed optimization method compared with some related recent algorithms. |
---|---|
AbstractList | Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of particular importance for further image analysis. Fuzzy c-mean (FCM) is a common clustering algorithm which is used for segmentation of MR images. However in the case of noisy MR images, efficiency of this algorithm considerably reduces. Recently, researchers have introduced two new parameters in order to improve the performance of traditional FCM in the case of noisy images. New parameters are computed using artificial neural networks and through a complex and time consuming optimization problem. In this paper, we present a new method for computation of these two parameters, efficiently. We use a particle swarm optimization (PSO) method and show the capability of PSO to find optimal values of these parameters. The advantage of the new proposed method is its simplified computations. Our simulation results on a set of noisy MR images, demonstrate the effectiveness of proposed optimization method compared with some related recent algorithms. |
Author | Forouzanfar, E. Forouzanfar, M. Forghani, N. |
Author_xml | – sequence: 1 givenname: N. surname: Forghani fullname: Forghani, N. organization: K.N. Toosi Univ. of Technol., Tehran – sequence: 2 givenname: M. surname: Forouzanfar fullname: Forouzanfar, M. organization: K.N. Toosi Univ. of Technol., Tehran – sequence: 3 givenname: E. surname: Forouzanfar fullname: Forouzanfar, E. |
BookMark | eNo1kMtOwzAURI0ACVr6A7DxD6TY8bXjLFFEIVIrJNoFC6TKSa-DUV6KHVXt11NBmcUZzeYsZkKu2q5FQu45m3PO0sd8neXrecxYMgeQSqv0gszSRHOIAbhQIC_J5H-Ijxsy8_6bnQISYilvyefqPad2PB4P1GPVYBtMcF1LO0uLwbiWBuf9iHT0rq1ovshW1NRVN7jw1dD9ibQ3Q3BljdTvzdDQrg-uccdfyx25tqb2ODv3lGwWz5vsNVq-veTZ0zJyKQtRIosdGtAlJCeInWTGirgslBFWWKVTUDFIVIKBRih5GReJTVFozbXlOyam5OFP6xBx2w-uMcNhe_5D_ABWIFb1 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISCIS.2007.4456869 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781424413645 1424413648 |
EndPage | 4 |
ExternalDocumentID | 4456869 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-75bdea48c4748c3d50af32cb6a3f3f68946245e63048e4c1c2b7f9e38818f1d03 |
IEDL.DBID | RIE |
ISBN | 142441363X 9781424413638 |
IngestDate | Wed Aug 27 01:54:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-75bdea48c4748c3d50af32cb6a3f3f68946245e63048e4c1c2b7f9e38818f1d03 |
PageCount | 4 |
ParticipantIDs | ieee_primary_4456869 |
PublicationCentury | 2000 |
PublicationDate | 2007-Nov. |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-Nov. |
PublicationDecade | 2000 |
PublicationTitle | 2007 22nd International Symposium on Computer and Information Sciences |
PublicationTitleAbbrev | ISCIS |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000454255 |
Score | 1.4576422 |
Snippet | Medical image segmentation is a complex and challenging task due to the intrinsic nature of the images. Magnetic resonance imaging (MRI) segmentation is of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Biomedical imaging Brain Clustering algorithms Computer networks Image analysis Image segmentation Magnetic noise Magnetic resonance imaging Noise reduction Particle swarm optimization |
Title | MRI fuzzy segmentation of brain tissue using IFCM algorithm with particle swarm optimization |
URI | https://ieeexplore.ieee.org/document/4456869 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzarW3StD0PxypMxE3YQRhJmsyhbcfWIu6v96UfE8WDl9KEUkLykveR9_s9hG6oBLeKcvBOVEgtGoTc4kISK4DPBQi1By2TbfHAxs_0fu7NW-h2j4VRSpXJZ6pvXsu7_DiThQmVDSho-4CFbdQGMauwWvt4iqGSA_O4wW45hJF5Q-lUt4MGNGOHg2g6jKYVg2H91x_lVUrtMjpEk2ZcVVLJW7_IRV_uflE2_nfgR6j3jePDj3sNdYxaKu2il8lThHWx233irVomNfYoxZnGwtSLwHm5FthkxC9xNBpOMH9fZptV_ppgE7bF61rc8PaDbxKcwamT1HDOHpqN7mbDsVXXWLBWoZ1bvidixWkgqQ8PEns218SVgnGiiWZBSJlLPcUIbHRFpSNd4etQkQD0vHZim5ygTpql6hRhcOYY13CAgsVIfZcGMdiisaO1S5l0tX-GumZiFuuKRWNRz8n5390X6KCMopaov0vUyTeFugL1n4vrct2_AGbjrHs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetCTmtb47R48SgvsssC5sSlaGmNr0oNJsyy7tVGgaSHG_nqHrxqNBy-EJYRslmHfzDDvDUI3VEBYRTlEJ9KlGnVcrvFAEM2B2wMwagtGebXFiA2e6f3UmjbQ7ZYLI6Usis9kJz8t_uWHicjyVFmXAto7zN1Bu4D71CrZWtuMSi4mBw5yzd4yCCPTWtSpGjs1bUZ3u964541LDcPquT8arBT40j9Afj2zsqzkrZOlQUdsfok2_nfqh6j9zeTDj1uMOkINGbfQi__kYZVtNp94LedRxT6KcaJwkHeMwGnxNnBeEz_HXr_nY_4-T1aL9DXCeeIWLyuDw-sPvopwAvtOVBE622jSv5v0BlrVZUFbuHqq2VYQSk4dQW04kNDSuSKmCBgniijmuJSZ1JKMwKcuqTCEGdjKlcQBpFdGqJNj1IyTWJ4gDOEc4wq2UPAZqW1SJwRvNDSUMikTprJPUStfmNmy1NGYVWty9vfla7Q3mPjD2dAbPZyj_SKnWnAAL1AzXWXyEpyBNLgqbOALos-vyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+22nd+International+Symposium+on+Computer+and+Information+Sciences&rft.atitle=MRI+fuzzy+segmentation+of+brain+tissue+using+IFCM+algorithm+with+particle+swarm+optimization&rft.au=Forghani%2C+N.&rft.au=Forouzanfar%2C+M.&rft.au=Forouzanfar%2C+E.&rft.date=2007-11-01&rft.pub=IEEE&rft.isbn=9781424413638&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISCIS.2007.4456869&rft.externalDocID=4456869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424413638/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424413638/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424413638/sc.gif&client=summon&freeimage=true |