An ant colony optimization algorithm for learning brain effective connectivity network from fMRI data

Identifying brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data is an important advanced subject in neuroinformatics in recent years, where the learning method based on bayesian networks (BN) has become a new hot topic in the field. This paper proposes a new...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 360 - 367
Main Authors Jinduo Liu, Junzhong Ji, Aidong Zhang, Peipeng Liang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/BIBM.2016.7822546

Cover

Loading…
Abstract Identifying brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data is an important advanced subject in neuroinformatics in recent years, where the learning method based on bayesian networks (BN) has become a new hot topic in the field. This paper proposes a new method to learn the brain effective connectivity network structure by combining ant colony optimization (ACO) with BN method, named as ACOEC. In the proposed algorithm, a brain effective connectivity network is first mapped onto an ant, and then the ant colony optimization by simulating real ants looking for food is employed to construct network structures and finally an ant with the highest score is obtained as the optimal solution. The experimental results on simulated and real fMRI data sets show that the new method can not only accurately identify the connections and directions of the brain networks, but also quantitatively describe the connection strength of the brain networks, which has a good clinical application prospects.
AbstractList Identifying brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data is an important advanced subject in neuroinformatics in recent years, where the learning method based on bayesian networks (BN) has become a new hot topic in the field. This paper proposes a new method to learn the brain effective connectivity network structure by combining ant colony optimization (ACO) with BN method, named as ACOEC. In the proposed algorithm, a brain effective connectivity network is first mapped onto an ant, and then the ant colony optimization by simulating real ants looking for food is employed to construct network structures and finally an ant with the highest score is obtained as the optimal solution. The experimental results on simulated and real fMRI data sets show that the new method can not only accurately identify the connections and directions of the brain networks, but also quantitatively describe the connection strength of the brain networks, which has a good clinical application prospects.
Author Jinduo Liu
Junzhong Ji
Peipeng Liang
Aidong Zhang
Author_xml – sequence: 1
  surname: Jinduo Liu
  fullname: Jinduo Liu
  organization: Beijing Municipal Key Laboratory of Multimedia and Intelligent Software, the College of Computer Science and Technology, Beijing University of Technology, China
– sequence: 2
  surname: Junzhong Ji
  fullname: Junzhong Ji
  email: jjz01@bjut.edu.cn
  organization: Beijing Municipal Key Laboratory of Multimedia and Intelligent Software, the College of Computer Science and Technology, Beijing University of Technology, China
– sequence: 3
  surname: Aidong Zhang
  fullname: Aidong Zhang
  email: azhang@buffalo.edu
  organization: Department of Computer Science and Engineering, University at Buffalo, The State University of New York, America
– sequence: 4
  surname: Peipeng Liang
  fullname: Peipeng Liang
  email: p.p.liang@163.com
  organization: Beijing Key Lab of MRI and Brain Informatics Department of Radiology, Xuanwu Hospital, Capital Medical University, China
BookMark eNotj11LwzAYhSPohc79APEmf6A1SZukudyGH4UNQXY_3qZvZrBNRgxK_fUW3dU5PPAcODfkMsSAhNxxVnLOzMO6Xe9KwbgqdSOErNUFWRrdcMnMDDkX1wRXgULI1MYhhonGU_aj_4Hs48yHY0w-v4_UxUQHhBR8ONIugQ8UnUOb_RfOagh_1eeJBszfMX1Ql-Ks7d5a2kOGW3LlYPjE5TkXZP_0uN-8FNvX53az2hbesFxoyTrsrXIMQVYWlGigQtHXlRF1LysnQVppoHdKo2Ky0411oJyUGhQCVAty_z_rEfFwSn6ENB3O36tfW7VVjw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BIBM.2016.7822546
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509016112
1509016112
EndPage 367
ExternalDocumentID 7822546
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-750bedc6f0ea53ca628a3e2d43924d53f5a5c59adf67e605b78cfa6f557a6eaa3
IEDL.DBID RIE
IngestDate Wed Jan 01 06:01:49 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-750bedc6f0ea53ca628a3e2d43924d53f5a5c59adf67e605b78cfa6f557a6eaa3
PageCount 8
ParticipantIDs ieee_primary_7822546
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
PublicationTitleAbbrev BIBM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6843524
Snippet Identifying brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data is an important advanced subject in neuroinformatics...
SourceID ieee
SourceType Publisher
StartPage 360
SubjectTerms Ant colony optimization
Bayes methods
Bayesian network
Brain effective connectivity network
Brain modeling
Connection strength
Electronic mail
fMRI
Mathematical model
Measurement
Optimization
Title An ant colony optimization algorithm for learning brain effective connectivity network from fMRI data
URI https://ieeexplore.ieee.org/document/7822546
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3c_DopmmS3WSPVixViIhU6K3sV6poE5H0oL_e2WysKB68hWRDlhmYN5N9b4aQMy1MzLhJKAbHkCIeC6rikaFJJKOMqZHQ2gmF81s-fUhu5mzeIecbLYy1tiGf2cBdNmf5ptJr96ts6NCMJbxLuli4ea1We1A5CsVwfD3OHVeLB-26HwNTGryYbJP860ueJvIcrGsV6I9fTRj_u5UdMvhW5sHdBnN2SceWfWIvSkADgWtAXb5DhVFg1corQb4sK6z_H1eA2Sm0MyKWoNxkCPBkDox3-CrGW-0nSUDpqeHgpCdQ5PfX4HikAzKbXM0up7Qdn0CfRFhTTAWUNZoXoZUs1pJHmYxtZDADiRLD4oJJppmQpuCpxaJGpZkuJC8YSyW3UsZ7pFdWpd0ngAGR4Y40U0okAh-mismsSLmyIbpYH5C-s9Di1TfIWLTGOfz79hHZcl7ynJBj0qvf1vYEkb1Wp41LPwG-JKih
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1qPehJpRW_3YNHk6ZJdpM9WrG02hSRCr2V_YoWbSIlPeivdzaJFcWDt5APsszAvEn2vXkAF4rrgDIdOlgcPQfxmDsy6Gon9IUfU9nlSlmhcDJmg8fwdkqnDbhca2GMMSX5zLj2sNzL17la2V9lHYtmNGQbsIm4H_JKrVVvVXY93ukNe4llazG3vvOHZUqJGP0dSL7eVRFFXtxVIV318WsM438Xswvtb20euV-jzh40TNYCc5URDBGxI6izd5JjHVjUAksiXp_y5bx4XhDsT0ntEvFEpPWGIBWdAysePooVV1VeEiSryOHEik9ImjwMiWWStmHSv5lcD5zaQMGZc69wsBmQRiuWekbQQAnmxyIwvsYexA81DVIqqKJc6JRFBj9rZBSrVLCU0kgwI0SwD80sz8wBECyJFFekqJQ85HgxklTEacSk8TDJ6hBaNkKzt2pExqwOztHfp89hazBJRrPRcHx3DNs2YxVD5ASaxXJlThHnC3lWpvcTwW-r8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=An+ant+colony+optimization+algorithm+for+learning+brain+effective+connectivity+network+from+fMRI+data&rft.au=Jinduo+Liu&rft.au=Junzhong+Ji&rft.au=Aidong+Zhang&rft.au=Peipeng+Liang&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=360&rft.epage=367&rft_id=info:doi/10.1109%2FBIBM.2016.7822546&rft.externalDocID=7822546