Smartphone accelerometer data used for detecting human emotions

The paper outlines work on the classification of emotions using smartphone accelerometer data. Such classification can be used, in conjunction with other methods of emotion detection, to adapt services to the user's emotional state. The data is collected from individuals who have been carrying...

Full description

Saved in:
Bibliographic Details
Published in2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 410 - 415
Main Authors Olsen, Andreas Fsrovig, Torresen, Jim
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper outlines work on the classification of emotions using smartphone accelerometer data. Such classification can be used, in conjunction with other methods of emotion detection, to adapt services to the user's emotional state. The data is collected from individuals who have been carrying their phone in a pocket while walking. An Android app was developed in order to monitor the smartphone accelerometer of the individuals who participated in the study and occasionally requested them to judge and submit their emotional state. This way, data is collected from a natural environment rather than a laboratory setting. The recorded data is then processed and used to train different classifiers to be compared. The machine learning algorithms decision tree, support vector machine and multilayer perceptron are used for this purpose. Emotions are classified in two dimensions: pleasantness and arousal (activation). While the recognition rate for the arousal dimension is promising at 75%, pleasantness is harder to predict, with a recognition rate of 51%. These findings indicate that by only analyzing accelerometer data recorded from a smartphone, it is possible to make predictions of a person's state of activation.
AbstractList The paper outlines work on the classification of emotions using smartphone accelerometer data. Such classification can be used, in conjunction with other methods of emotion detection, to adapt services to the user's emotional state. The data is collected from individuals who have been carrying their phone in a pocket while walking. An Android app was developed in order to monitor the smartphone accelerometer of the individuals who participated in the study and occasionally requested them to judge and submit their emotional state. This way, data is collected from a natural environment rather than a laboratory setting. The recorded data is then processed and used to train different classifiers to be compared. The machine learning algorithms decision tree, support vector machine and multilayer perceptron are used for this purpose. Emotions are classified in two dimensions: pleasantness and arousal (activation). While the recognition rate for the arousal dimension is promising at 75%, pleasantness is harder to predict, with a recognition rate of 51%. These findings indicate that by only analyzing accelerometer data recorded from a smartphone, it is possible to make predictions of a person's state of activation.
Author Olsen, Andreas Fsrovig
Torresen, Jim
Author_xml – sequence: 1
  givenname: Andreas Fsrovig
  surname: Olsen
  fullname: Olsen, Andreas Fsrovig
  email: andrefol@ifi.uio.no
  organization: Dept. of Inf., Univ. of Oslo, Oslo, Norway
– sequence: 2
  givenname: Jim
  surname: Torresen
  fullname: Torresen, Jim
  email: jimtoer@ifi.uio.no
  organization: Dept. of Inf., Univ. of Oslo, Oslo, Norway
BookMark eNotT8FqwzAU82A7rN1-oLv4B5L52bEdn0YJ2xoo7NDey2v83AaauCTuYX8_w3oSEpKQFuxxjCMxtgJRAgj33ja7dVtKAaa0dRaceGAL0MIJrSXoZ_axG3BK13OOcew6utAUB0o0cY8J-W0mz0PMLGtd6scTP98GHDkNMfVxnF_YU8DLTK93XLL91-e-2RTbn--2WW-L3olU2AoFoVI-CKhC5QmcCVZqqCjUSgIYtNhJZbQ1dSe9qTD4bPHehaPDo1qyt__anogO16nPq38P90vqD1KuRoc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI.2016.7810990
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509055215
9781509055210
EndPage 415
ExternalDocumentID 7810990
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-74a0ea33df014f4de196f72514ef832116a7ac2365768c2d64afd96fdd9fb9ab3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-74a0ea33df014f4de196f72514ef832116a7ac2365768c2d64afd96fdd9fb9ab3
PageCount 6
ParticipantIDs ieee_primary_7810990
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 3rd International Conference on Systems and Informatics (ICSAI)
PublicationTitleAbbrev ICSAI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7438351
Snippet The paper outlines work on the classification of emotions using smartphone accelerometer data. Such classification can be used, in conjunction with other...
SourceID ieee
SourceType Publisher
StartPage 410
SubjectTerms Accelerometers
Affective computing
Computational modeling
Data collection
Emotion recognition
Mood
Sensors
Title Smartphone accelerometer data used for detecting human emotions
URI https://ieeexplore.ieee.org/document/7810990
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5aT55UWvHNHjyaNM1uN-5RiqUVKoIVeiv7mAURq9jk4q93JmkrigdvYdllH9kwM5nvmw_g0jnO76FKgtI2UVK7xCLdZRyQ82yjl4VnvvP0Xo-f1N18MG_B1ZYLg4g1-AxTfqxz-eHNV_yrrFdc13mcNrQpcGu4WhseTGZ6k-HjzYTBWjpdd_yhmFIbjNEeTDdTNTiRl7QqXeo_f1Vh_O9a9qH7Tc0TD1ujcwAtXHbI436lG8AocxTWe7IkXISATkwwAFRUKwyCnFMRkFMGNE7U0nwCGw2fVRdmo9vZcJyslRGSZ5OVSaFshlbKECnAiSogfUaxIE9FYWTlob62hfW51BxM-DxoZWOgLiGY6Ix18hB2lrSkIxDOm9y7YPo0QkVTOJlZq7SLueubEM0xdHjvi_em9sVive2Tv5tPYZfPv-HqncFO-VHhORnt0l3Ub-sLcPKbUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEF5qPehJpRXf7kGPSdNku3EPHqRaWvtAsEJvYR-zIGIVmyD6V_wr_jhnk7SieC14CyG7zO4MzEzm-2YIOVHK1feAeYZx6bGIK08C2jK0MHiWVkexdnzn4Yh379j1pDWpkI8FFwYAcvAZ-O4xr-WbJ525X2WN-Cyv45QQyj68vWKCNjvvXaI2T8OwczVud71yhoB3L4LUi5kMQEaRsZgKWGYADc7G6NMZWDejp8llLHUYcRd269BwJq3BT4wRVgmpItx2haximNEKC3LYnHgTiEavfXvRc-gw7peS_RjRknuozgb5nJ-tAKY8-FmqfP3-q-3jPz38Jql_Uw_pzcKpbpEKTGuYUTyihTsUPVCpNXpK12QBLYI6gCvNZmAoBt_UgCuJ4Dqajx6kUMwomtXJeBmCb5PqFEXaIVRpEWplRBNXMCtiFQVSMq5sqJrCWLFLau6qk-eit0dS3vLe36-PyVp3PBwkg96ov0_WneoLXuIBqaYvGRxigJKqo9xQKEmWrJsvQaz5Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=Smartphone+accelerometer+data+used+for+detecting+human+emotions&rft.au=Olsen%2C+Andreas+Fsrovig&rft.au=Torresen%2C+Jim&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=410&rft.epage=415&rft_id=info:doi/10.1109%2FICSAI.2016.7810990&rft.externalDocID=7810990