A neural network based surrogate model for predicting noise in synchronous reluctance motors
This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs). The natural frequencies of various vibration modes for a SynRM stator with generalized tooth geometry and slot numbers have been obtained using...
Saved in:
Published in | 2016 IEEE Conference on Electromagnetic Field Computation (CEFC) p. 1 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CEFC.2016.7816297 |
Cover
Abstract | This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs). The natural frequencies of various vibration modes for a SynRM stator with generalized tooth geometry and slot numbers have been obtained using structural FEA based computations and then used to build a NN based surrogate model. The accuracy of the surrogate model has been tested and applied to predict the noise level in SynRMs. Also, varying trends in the noise levels for single-barrier SynRMs have been analyzed as a function of the rotor's flux carrier and barrier widths using the natural frequency prediction model. |
---|---|
AbstractList | This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs). The natural frequencies of various vibration modes for a SynRM stator with generalized tooth geometry and slot numbers have been obtained using structural FEA based computations and then used to build a NN based surrogate model. The accuracy of the surrogate model has been tested and applied to predict the noise level in SynRMs. Also, varying trends in the noise levels for single-barrier SynRMs have been analyzed as a function of the rotor's flux carrier and barrier widths using the natural frequency prediction model. |
Author | Rahman, Tanvir Mohammadi, Mohammad Hossain Lowther, David A. Chang, Kang Bofan Wang |
Author_xml | – sequence: 1 surname: Bofan Wang fullname: Bofan Wang organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada – sequence: 2 givenname: Tanvir surname: Rahman fullname: Rahman, Tanvir organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada – sequence: 3 givenname: Kang surname: Chang fullname: Chang, Kang organization: Infolytica Corp., Montreal, QC, Canada – sequence: 4 givenname: Mohammad Hossain surname: Mohammadi fullname: Mohammadi, Mohammad Hossain organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada – sequence: 5 givenname: David A. surname: Lowther fullname: Lowther, David A. email: david.lowther@mcgill.ca organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada |
BookMark | eNotj8FKAzEURSPowlY_QNzkBzq-lzGTybIMrRYKbroUSibzUoPTpCQZpH9vxa7O5p4LZ8ZuQwzE2BNChQj6pVutu0oANpVqsRFa3bAZStCAUAt1zz6XPNCUzHhB-Ynpm_cm08DzlFI8mEL8GAcauYuJnxIN3hYfDjxEn4n7wPM52K8UQ5wyTzROtphg_6QSU35gd86MmR6vnLPderXr3hfbj7dNt9wuvIayUOgcqd45acFJBa2z6PoetRiABNamJdM0PQ29k0LVGlt5WdZa4itoAVDP2fP_rSei_Sn5o0nn_bW3_gVKplDw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CEFC.2016.7816297 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1509010327 9781509010325 |
EndPage | 1 |
ExternalDocumentID | 7816297 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-71ffe7bff5c0f5708fc1fbb192d0e213a8ea66bedbf527391855c039514092003 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:18 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-71ffe7bff5c0f5708fc1fbb192d0e213a8ea66bedbf527391855c039514092003 |
PageCount | 1 |
ParticipantIDs | ieee_primary_7816297 |
PublicationCentury | 2000 |
PublicationDate | 2016-Nov. |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Electromagnetic Field Computation (CEFC) |
PublicationTitleAbbrev | CEFC |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6205224 |
Snippet | This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs).... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Computational modeling electric motors Mathematical model neural network noise Noise level Predictive models reluctance motors Stators Vibrations |
Title | A neural network based surrogate model for predicting noise in synchronous reluctance motors |
URI | https://ieeexplore.ieee.org/document/7816297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09a8MwEBVJpk5tSUq_0dCxduT4Q_ZYQkIopHRIIUMh6OQThAY7-GNof311tpvS0qGThZGwkQT3pHvvHWN3QmqwqD91_DREJ4gNOEpp4SgLJSQgwCQmofDyKVq8BI_rcN1j9wctDCI25DN0qdnk8tNc13RVNpaxF00S2Wd9u81arVaXqPREMp7O5lPiakVu1-9HwZQmXsyP2fLrSy1N5M2tK3D1xy8Txv_-ygkbfSvz-PMh5pyyHmZD9vrAyZZS7eyjIXVzik0pL-uiyOmajDf1brjFp3xfUGaGuM48y7cl8m3Gy_dMk0duXpe8wF2tK9oKdhBV4hmx1Xy2mi6crmqCs01E5UjPGJRgTKiFCaWIjfYMgAVyqcCJ56sYVRQBpmDIey2x8dr29C3Qsic9YqqdsUGWZ3jOOGXeQ6MNisAEmGBiQPkAKEDEIL3wgg1pYjb71hdj083J5d-vr9gRLU6r47tmg6qo8cYG9Apum5X8BFEOpfI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAFFxqPehJpRW_3YNHk27aJJscpbRUbYuHCj0IJW_zFoqSlHwc9Ne7L4kVxYOnhLAhYTcwk30z8xi7EVKBYf2xNYg9tNxAgxVFSliRoRISEKAfkFF4Nvcnz-7D0lu22O3WC4OIlfgMbTqtavlxqkraKuvJwPH7odxhuwb3Xa92azWlSkeEveFoPCS1lm83I3-0TKkQY3zAZl_PqoUir3ZZgK0-fsUw_vdlDln325vHn7aoc8RamHTYyx2nYMrozRwqWTcndIp5XmZZShtlvOp4ww1D5ZuMajOkduZJus6RrxOevyeKUnLTMucZvpWqoI_B3ES9eLpsMR4thhOr6ZtgrUNRWNLRGiVo7SmhPSkCrRwNYKhcLLDvDKIAI98HjEFT-lpoENuMHBiqZf71SKt2zNpJmuAJ41R797TSKFztYoihhmgAgAJEANLxTlmHJma1qZMxVs2cnP19-ZrtTRaz6Wp6P388Z_u0ULWr74K1i6zESwPvBVxVq_oJLTapPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Electromagnetic+Field+Computation+%28CEFC%29&rft.atitle=A+neural+network+based+surrogate+model+for+predicting+noise+in+synchronous+reluctance+motors&rft.au=Bofan+Wang&rft.au=Rahman%2C+Tanvir&rft.au=Chang%2C+Kang&rft.au=Mohammadi%2C+Mohammad+Hossain&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FCEFC.2016.7816297&rft.externalDocID=7816297 |