A neural network based surrogate model for predicting noise in synchronous reluctance motors

This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs). The natural frequencies of various vibration modes for a SynRM stator with generalized tooth geometry and slot numbers have been obtained using...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Electromagnetic Field Computation (CEFC) p. 1
Main Authors Bofan Wang, Rahman, Tanvir, Chang, Kang, Mohammadi, Mohammad Hossain, Lowther, David A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2016
Subjects
Online AccessGet full text
DOI10.1109/CEFC.2016.7816297

Cover

Abstract This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs). The natural frequencies of various vibration modes for a SynRM stator with generalized tooth geometry and slot numbers have been obtained using structural FEA based computations and then used to build a NN based surrogate model. The accuracy of the surrogate model has been tested and applied to predict the noise level in SynRMs. Also, varying trends in the noise levels for single-barrier SynRMs have been analyzed as a function of the rotor's flux carrier and barrier widths using the natural frequency prediction model.
AbstractList This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs). The natural frequencies of various vibration modes for a SynRM stator with generalized tooth geometry and slot numbers have been obtained using structural FEA based computations and then used to build a NN based surrogate model. The accuracy of the surrogate model has been tested and applied to predict the noise level in SynRMs. Also, varying trends in the noise levels for single-barrier SynRMs have been analyzed as a function of the rotor's flux carrier and barrier widths using the natural frequency prediction model.
Author Rahman, Tanvir
Mohammadi, Mohammad Hossain
Lowther, David A.
Chang, Kang
Bofan Wang
Author_xml – sequence: 1
  surname: Bofan Wang
  fullname: Bofan Wang
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
– sequence: 2
  givenname: Tanvir
  surname: Rahman
  fullname: Rahman, Tanvir
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
– sequence: 3
  givenname: Kang
  surname: Chang
  fullname: Chang, Kang
  organization: Infolytica Corp., Montreal, QC, Canada
– sequence: 4
  givenname: Mohammad Hossain
  surname: Mohammadi
  fullname: Mohammadi, Mohammad Hossain
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
– sequence: 5
  givenname: David A.
  surname: Lowther
  fullname: Lowther, David A.
  email: david.lowther@mcgill.ca
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
BookMark eNotj8FKAzEURSPowlY_QNzkBzq-lzGTybIMrRYKbroUSibzUoPTpCQZpH9vxa7O5p4LZ8ZuQwzE2BNChQj6pVutu0oANpVqsRFa3bAZStCAUAt1zz6XPNCUzHhB-Ynpm_cm08DzlFI8mEL8GAcauYuJnxIN3hYfDjxEn4n7wPM52K8UQ5wyTzROtphg_6QSU35gd86MmR6vnLPderXr3hfbj7dNt9wuvIayUOgcqd45acFJBa2z6PoetRiABNamJdM0PQ29k0LVGlt5WdZa4itoAVDP2fP_rSei_Sn5o0nn_bW3_gVKplDw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEFC.2016.7816297
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509010327
9781509010325
EndPage 1
ExternalDocumentID 7816297
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-71ffe7bff5c0f5708fc1fbb192d0e213a8ea66bedbf527391855c039514092003
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:18 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-71ffe7bff5c0f5708fc1fbb192d0e213a8ea66bedbf527391855c039514092003
PageCount 1
ParticipantIDs ieee_primary_7816297
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Electromagnetic Field Computation (CEFC)
PublicationTitleAbbrev CEFC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6205224
Snippet This paper proposes a neural network (NN) based noise prediction model for electric machines, applied to the case of synchronous reluctance motors (SynRMs)....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Computational modeling
electric motors
Mathematical model
neural network
noise
Noise level
Predictive models
reluctance motors
Stators
Vibrations
Title A neural network based surrogate model for predicting noise in synchronous reluctance motors
URI https://ieeexplore.ieee.org/document/7816297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09a8MwEBVJpk5tSUq_0dCxduT4Q_ZYQkIopHRIIUMh6OQThAY7-GNof311tpvS0qGThZGwkQT3pHvvHWN3QmqwqD91_DREJ4gNOEpp4SgLJSQgwCQmofDyKVq8BI_rcN1j9wctDCI25DN0qdnk8tNc13RVNpaxF00S2Wd9u81arVaXqPREMp7O5lPiakVu1-9HwZQmXsyP2fLrSy1N5M2tK3D1xy8Txv_-ygkbfSvz-PMh5pyyHmZD9vrAyZZS7eyjIXVzik0pL-uiyOmajDf1brjFp3xfUGaGuM48y7cl8m3Gy_dMk0duXpe8wF2tK9oKdhBV4hmx1Xy2mi6crmqCs01E5UjPGJRgTKiFCaWIjfYMgAVyqcCJ56sYVRQBpmDIey2x8dr29C3Qsic9YqqdsUGWZ3jOOGXeQ6MNisAEmGBiQPkAKEDEIL3wgg1pYjb71hdj083J5d-vr9gRLU6r47tmg6qo8cYG9Apum5X8BFEOpfI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAFFxqPehJpRW_3YNHk27aJJscpbRUbYuHCj0IJW_zFoqSlHwc9Ne7L4kVxYOnhLAhYTcwk30z8xi7EVKBYf2xNYg9tNxAgxVFSliRoRISEKAfkFF4Nvcnz-7D0lu22O3WC4OIlfgMbTqtavlxqkraKuvJwPH7odxhuwb3Xa92azWlSkeEveFoPCS1lm83I3-0TKkQY3zAZl_PqoUir3ZZgK0-fsUw_vdlDln325vHn7aoc8RamHTYyx2nYMrozRwqWTcndIp5XmZZShtlvOp4ww1D5ZuMajOkduZJus6RrxOevyeKUnLTMucZvpWqoI_B3ES9eLpsMR4thhOr6ZtgrUNRWNLRGiVo7SmhPSkCrRwNYKhcLLDvDKIAI98HjEFT-lpoENuMHBiqZf71SKt2zNpJmuAJ41R797TSKFztYoihhmgAgAJEANLxTlmHJma1qZMxVs2cnP19-ZrtTRaz6Wp6P388Z_u0ULWr74K1i6zESwPvBVxVq_oJLTapPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Electromagnetic+Field+Computation+%28CEFC%29&rft.atitle=A+neural+network+based+surrogate+model+for+predicting+noise+in+synchronous+reluctance+motors&rft.au=Bofan+Wang&rft.au=Rahman%2C+Tanvir&rft.au=Chang%2C+Kang&rft.au=Mohammadi%2C+Mohammad+Hossain&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FCEFC.2016.7816297&rft.externalDocID=7816297