Multiobjective genetic algorithm-based method for job shop scheduling problem: Machines under preventive and corrective maintenance activities

In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the...

Full description

Saved in:
Bibliographic Details
Published in2012 4th Conference on Data Mining and Optimization (DMO) pp. 13 - 17
Main Authors Harrath, Y., Kaabi, J., Ben Ali, Mohamed, Sassi, Mohamed
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2012
Subjects
Online AccessGet full text
ISBN9781467327176
1467327174
ISSN2155-6938
DOI10.1109/DMO.2012.6329791

Cover

Loading…
Abstract In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the maintenance activities. The job shop scheduling problem without considering the availability constraints is known to be NP-Hard. Because of the complexity of the problem, we develop a two-phase genetic algorithm based heuristic to solve the addressed problem. A set of pareto optimal solutions is obtained in the first phase containing relatively large number of solutions. This makes difficult the choice of the most suitable solution. For this reason the second phase will filter the obtained set so as to reduce its size. Performance of the proposed heuristic is evaluated through computational experiments on the benchmark of Muth & Thomson mt06 of 6×6 and 10 different sizes benchmarks of Lawrence. The results show that the heuristic gives solutions close to those obtained in the classic job shop scheduling problem.
AbstractList In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the maintenance activities. The job shop scheduling problem without considering the availability constraints is known to be NP-Hard. Because of the complexity of the problem, we develop a two-phase genetic algorithm based heuristic to solve the addressed problem. A set of pareto optimal solutions is obtained in the first phase containing relatively large number of solutions. This makes difficult the choice of the most suitable solution. For this reason the second phase will filter the obtained set so as to reduce its size. Performance of the proposed heuristic is evaluated through computational experiments on the benchmark of Muth & Thomson mt06 of 6×6 and 10 different sizes benchmarks of Lawrence. The results show that the heuristic gives solutions close to those obtained in the classic job shop scheduling problem.
Author Kaabi, J.
Sassi, Mohamed
Ben Ali, Mohamed
Harrath, Y.
Author_xml – sequence: 1
  givenname: Y.
  surname: Harrath
  fullname: Harrath, Y.
  email: yharrath@uob.edu.bh
  organization: Dept. of Comput. Sci., Univ. of Bahrain, Sakhir, Bahrain
– sequence: 2
  givenname: J.
  surname: Kaabi
  fullname: Kaabi, J.
  email: jharrath@itc.uob.bh
  organization: Dept. of Comput. Sci., Univ. of Bahrain, Sakhir, Bahrain
– sequence: 3
  givenname: Mohamed
  surname: Ben Ali
  fullname: Ben Ali, Mohamed
  email: mohamed.benali@fsgf.rnu.tn
  organization: Nat. Sch. of Eng. of Bizerte, Bizerte, Tunisia
– sequence: 4
  givenname: Mohamed
  surname: Sassi
  fullname: Sassi, Mohamed
  email: mohamed.sassi@esstt.rnu.tn
  organization: Higher Sch. of Sci. & Tech., Tunis, Tunisia
BookMark eNpVkM9OAjEYxGvERETuJl76Aov9Wmi33gz-TSBcuJNu-y1bstuSbiHxJXxmUbl4msxM8ptkbsggxICE3AGbADD98LxcTTgDPpGCa6Xhgoy1KmEqleAKpL7855UckCGH2ayQWpTXZNz3O8bYCSRLzYbka3los4_VDm32R6RbDJi9pabdxuRz0xWV6dHRDnMTHa1jortY0b6Je9rbBt2h9WFL9ylWLXaPdGls4wP29BAcplOORwy_ZBMctTGl81BnfMgYTLCn6ify2WN_S65q0_Y4PuuIrF9f1vP3YrF6-5g_LQqvWS4kGqescDBzqqokq4CLqeSGK6NZLYwBVZeyRpAGOEBpuXVCqNqARG0dFyNy_4f1iLjZJ9-Z9Lk5Hyq-AZ11bPY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DMO.2012.6329791
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467327169
9781467327183
1467327166
1467327182
EndPage 17
ExternalDocumentID 6329791
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-6ead7c3d15d7bb60b123462a27a90f3aa17f86fe16a12118c2cd337fa16e9cd23
IEDL.DBID RIE
ISBN 9781467327176
1467327174
ISSN 2155-6938
IngestDate Wed Aug 27 03:28:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6ead7c3d15d7bb60b123462a27a90f3aa17f86fe16a12118c2cd337fa16e9cd23
PageCount 5
ParticipantIDs ieee_primary_6329791
PublicationCentury 2000
PublicationDate 2012-Sept.
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-Sept.
PublicationDecade 2010
PublicationTitle 2012 4th Conference on Data Mining and Optimization (DMO)
PublicationTitleAbbrev DMO
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096890
ssj0000818046
Score 1.496762
Snippet In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive...
SourceID ieee
SourceType Publisher
StartPage 13
SubjectTerms Availability
Benchmark testing
Biological cells
Genetic algorithms
job shop
Job shop scheduling
maintenance
Maintenance engineering
multiobjective optimization
Pareto optimization
scheduling
Title Multiobjective genetic algorithm-based method for job shop scheduling problem: Machines under preventive and corrective maintenance activities
URI https://ieeexplore.ieee.org/document/6329791
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWAialAi3jLAyNpk9ixE1agqpACDEViQ36FtkCDSrrwEXwz9zppEIiBLYklO3Gc3IfvOYeQU8GcAzdVBzyDSIc7qwMVKh4Y6Qxue3GdIsA5vxGje379kDyskbMWC-Oc88Vnro-Hfi_flmaJqbKBYHEmEaq-DoFbjdVq8ylIzRY2oY3Pr4BvnvoUCxi1JBAZSz2uS0gWQwjDV3RPzXm7hRlmg8v8Fmu-4n4z3g_hFW93hh2Sr-64Ljd57i8r3Tcfv8gc__tIW6T3jfCjd63t2iZrbr5DOiuJB9p88V3y6QG6pZ7V_0UKyw1Rj1S9PJWLaTV5DdAMWloLUVPwgOms1PR9Ur5RiJvBjiHcnTayNec097Wb7p0idm0B12sCKehZzS01KBVSD_SqkMgC2UCgyXiJC4jpe2Q8vBpfjIJGwiGYZmEVCFin0jAbJVZqLUINdpKLWMVSZWHBlIpkkYrCRUIh1VxqYmMZk4WKhMuMjdku2ZiXc7dHaOIKDY2CsUTyxEaKF-CMOeggNKER0T7p4uw-vtUkHY_NxB78ffmQbOIbrovFjshGtVi6Y_AuKn3il9UXX4jL6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYQDDBxixsPjKRNYsdOWDlUjgBDkdgqX6Et0KCSLvwIfjPvOWkRiIEtiSU7cZy8w-_7PkKOBHMO3FQd8AwiHe6sDlSoeGCkM7jtxXWKAOf8VnQe-NVj8jhHjmdYGOecLz5zLTz0e_m2NBNMlbUFizOJUPWFBMG4NVprllFBcrawCW58hgW889QnWcCsJYHIWOqRXUKyGIIYPiV8as5nm5hh1j7L77DqK241I_6QXvGW52KZ5NN7rgtOnluTSrfMxy86x_8-1ArZ-Mb40fuZ9Volc260RpanIg-0-ebXyaeH6JZ6WP8ZKSw4xD1S9fJUjgdV_zVAQ2hpLUVNwQemw1LT9375RiFyBkuGgHfaCNec0NxXb7p3iui1MVyvKaSgZzWy1KBYSD3Qq0IqC-QDgSbjRS4gqt8g3Yvz7mknaEQcgkEWVoGAlSoNs1FipdYi1GApuYhVLFUWFkypSBapKFwkFJLNpSY2ljFZqEi4zNiYbZL5UTlyW4QmrtDQKBhLJE9spHgB7piDDkITGhFtk3Wc3d5bTdPRayZ25-_Lh2Sx081vejeXt9e7ZAnfdl06tkfmq_HE7YOvUekDv8S-ACyyzzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+4th+Conference+on+Data+Mining+and+Optimization+%28DMO%29&rft.atitle=Multiobjective+genetic+algorithm-based+method+for+job+shop+scheduling+problem%3A+Machines+under+preventive+and+corrective+maintenance+activities&rft.au=Harrath%2C+Y.&rft.au=Kaabi%2C+J.&rft.au=Ben+Ali%2C+Mohamed&rft.au=Sassi%2C+Mohamed&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467327176&rft.issn=2155-6938&rft.spage=13&rft.epage=17&rft_id=info:doi/10.1109%2FDMO.2012.6329791&rft.externalDocID=6329791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-6938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-6938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-6938&client=summon