Multiobjective genetic algorithm-based method for job shop scheduling problem: Machines under preventive and corrective maintenance activities
In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the...
Saved in:
Published in | 2012 4th Conference on Data Mining and Optimization (DMO) pp. 13 - 17 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467327176 1467327174 |
ISSN | 2155-6938 |
DOI | 10.1109/DMO.2012.6329791 |
Cover
Loading…
Abstract | In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the maintenance activities. The job shop scheduling problem without considering the availability constraints is known to be NP-Hard. Because of the complexity of the problem, we develop a two-phase genetic algorithm based heuristic to solve the addressed problem. A set of pareto optimal solutions is obtained in the first phase containing relatively large number of solutions. This makes difficult the choice of the most suitable solution. For this reason the second phase will filter the obtained set so as to reduce its size. Performance of the proposed heuristic is evaluated through computational experiments on the benchmark of Muth & Thomson mt06 of 6×6 and 10 different sizes benchmarks of Lawrence. The results show that the heuristic gives solutions close to those obtained in the classic job shop scheduling problem. |
---|---|
AbstractList | In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the maintenance activities. The job shop scheduling problem without considering the availability constraints is known to be NP-Hard. Because of the complexity of the problem, we develop a two-phase genetic algorithm based heuristic to solve the addressed problem. A set of pareto optimal solutions is obtained in the first phase containing relatively large number of solutions. This makes difficult the choice of the most suitable solution. For this reason the second phase will filter the obtained set so as to reduce its size. Performance of the proposed heuristic is evaluated through computational experiments on the benchmark of Muth & Thomson mt06 of 6×6 and 10 different sizes benchmarks of Lawrence. The results show that the heuristic gives solutions close to those obtained in the classic job shop scheduling problem. |
Author | Kaabi, J. Sassi, Mohamed Ben Ali, Mohamed Harrath, Y. |
Author_xml | – sequence: 1 givenname: Y. surname: Harrath fullname: Harrath, Y. email: yharrath@uob.edu.bh organization: Dept. of Comput. Sci., Univ. of Bahrain, Sakhir, Bahrain – sequence: 2 givenname: J. surname: Kaabi fullname: Kaabi, J. email: jharrath@itc.uob.bh organization: Dept. of Comput. Sci., Univ. of Bahrain, Sakhir, Bahrain – sequence: 3 givenname: Mohamed surname: Ben Ali fullname: Ben Ali, Mohamed email: mohamed.benali@fsgf.rnu.tn organization: Nat. Sch. of Eng. of Bizerte, Bizerte, Tunisia – sequence: 4 givenname: Mohamed surname: Sassi fullname: Sassi, Mohamed email: mohamed.sassi@esstt.rnu.tn organization: Higher Sch. of Sci. & Tech., Tunis, Tunisia |
BookMark | eNpVkM9OAjEYxGvERETuJl76Aov9Wmi33gz-TSBcuJNu-y1bstuSbiHxJXxmUbl4msxM8ptkbsggxICE3AGbADD98LxcTTgDPpGCa6Xhgoy1KmEqleAKpL7855UckCGH2ayQWpTXZNz3O8bYCSRLzYbka3los4_VDm32R6RbDJi9pabdxuRz0xWV6dHRDnMTHa1jortY0b6Je9rbBt2h9WFL9ylWLXaPdGls4wP29BAcplOORwy_ZBMctTGl81BnfMgYTLCn6ify2WN_S65q0_Y4PuuIrF9f1vP3YrF6-5g_LQqvWS4kGqescDBzqqokq4CLqeSGK6NZLYwBVZeyRpAGOEBpuXVCqNqARG0dFyNy_4f1iLjZJ9-Z9Lk5Hyq-AZ11bPY |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/DMO.2012.6329791 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781467327169 9781467327183 1467327166 1467327182 |
EndPage | 17 |
ExternalDocumentID | 6329791 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-6ead7c3d15d7bb60b123462a27a90f3aa17f86fe16a12118c2cd337fa16e9cd23 |
IEDL.DBID | RIE |
ISBN | 9781467327176 1467327174 |
ISSN | 2155-6938 |
IngestDate | Wed Aug 27 03:28:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-6ead7c3d15d7bb60b123462a27a90f3aa17f86fe16a12118c2cd337fa16e9cd23 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6329791 |
PublicationCentury | 2000 |
PublicationDate | 2012-Sept. |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2012 4th Conference on Data Mining and Optimization (DMO) |
PublicationTitleAbbrev | DMO |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001096890 ssj0000818046 |
Score | 1.496762 |
Snippet | In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 13 |
SubjectTerms | Availability Benchmark testing Biological cells Genetic algorithms job shop Job shop scheduling maintenance Maintenance engineering multiobjective optimization Pareto optimization scheduling |
Title | Multiobjective genetic algorithm-based method for job shop scheduling problem: Machines under preventive and corrective maintenance activities |
URI | https://ieeexplore.ieee.org/document/6329791 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWAialAi3jLAyNpk9ixE1agqpACDEViQ36FtkCDSrrwEXwz9zppEIiBLYklO3Gc3IfvOYeQU8GcAzdVBzyDSIc7qwMVKh4Y6Qxue3GdIsA5vxGje379kDyskbMWC-Oc88Vnro-Hfi_flmaJqbKBYHEmEaq-DoFbjdVq8ylIzRY2oY3Pr4BvnvoUCxi1JBAZSz2uS0gWQwjDV3RPzXm7hRlmg8v8Fmu-4n4z3g_hFW93hh2Sr-64Ljd57i8r3Tcfv8gc__tIW6T3jfCjd63t2iZrbr5DOiuJB9p88V3y6QG6pZ7V_0UKyw1Rj1S9PJWLaTV5DdAMWloLUVPwgOms1PR9Ur5RiJvBjiHcnTayNec097Wb7p0idm0B12sCKehZzS01KBVSD_SqkMgC2UCgyXiJC4jpe2Q8vBpfjIJGwiGYZmEVCFin0jAbJVZqLUINdpKLWMVSZWHBlIpkkYrCRUIh1VxqYmMZk4WKhMuMjdku2ZiXc7dHaOIKDY2CsUTyxEaKF-CMOeggNKER0T7p4uw-vtUkHY_NxB78ffmQbOIbrovFjshGtVi6Y_AuKn3il9UXX4jL6Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYQDDBxixsPjKRNYsdOWDlUjgBDkdgqX6Et0KCSLvwIfjPvOWkRiIEtiSU7cZy8w-_7PkKOBHMO3FQd8AwiHe6sDlSoeGCkM7jtxXWKAOf8VnQe-NVj8jhHjmdYGOecLz5zLTz0e_m2NBNMlbUFizOJUPWFBMG4NVprllFBcrawCW58hgW889QnWcCsJYHIWOqRXUKyGIIYPiV8as5nm5hh1j7L77DqK241I_6QXvGW52KZ5NN7rgtOnluTSrfMxy86x_8-1ArZ-Mb40fuZ9Volc260RpanIg-0-ebXyaeH6JZ6WP8ZKSw4xD1S9fJUjgdV_zVAQ2hpLUVNwQemw1LT9375RiFyBkuGgHfaCNec0NxXb7p3iui1MVyvKaSgZzWy1KBYSD3Qq0IqC-QDgSbjRS4gqt8g3Yvz7mknaEQcgkEWVoGAlSoNs1FipdYi1GApuYhVLFUWFkypSBapKFwkFJLNpSY2ljFZqEi4zNiYbZL5UTlyW4QmrtDQKBhLJE9spHgB7piDDkITGhFtk3Wc3d5bTdPRayZ25-_Lh2Sx081vejeXt9e7ZAnfdl06tkfmq_HE7YOvUekDv8S-ACyyzzE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+4th+Conference+on+Data+Mining+and+Optimization+%28DMO%29&rft.atitle=Multiobjective+genetic+algorithm-based+method+for+job+shop+scheduling+problem%3A+Machines+under+preventive+and+corrective+maintenance+activities&rft.au=Harrath%2C+Y.&rft.au=Kaabi%2C+J.&rft.au=Ben+Ali%2C+Mohamed&rft.au=Sassi%2C+Mohamed&rft.date=2012-09-01&rft.pub=IEEE&rft.isbn=9781467327176&rft.issn=2155-6938&rft.spage=13&rft.epage=17&rft_id=info:doi/10.1109%2FDMO.2012.6329791&rft.externalDocID=6329791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-6938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-6938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-6938&client=summon |