Intrusion detection learning algorithm through network mining

This paper presents a learning algorithm for adaptive network intrusion detection based on clustering and naïve Bayesian classifier, which induces a hybridization of unsupervised and supervised learning processes. The proposed approach scales up the balance detection rates for different types of ne...

Full description

Saved in:
Bibliographic Details
Published in16th Int'l Conf. Computer and Information Technology pp. 490 - 495
Main Authors Abu Afza, A. J. M., Uddin, Mohammad Shorif
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2014
Subjects
Online AccessGet full text
DOI10.1109/ICCITechn.2014.6997324

Cover

Abstract This paper presents a learning algorithm for adaptive network intrusion detection based on clustering and naïve Bayesian classifier, which induces a hybridization of unsupervised and supervised learning processes. The proposed approach scales up the balance detection rates for different types of network intrusions, and keeps the false positives at acceptable level in network intrusion detection. The algorithm first clusters the network logs into several groups based on similarity of network logs, and then calculates the prior and class conditional probabilities for each cluster. In classifying a new network log, the algorithm calculates the similarity of attribute values of network data with each cluster and initialize a weight value for each cluster. Then each cluster classifies the network data with its priori and conditional probabilities that multiply with respective cluster's weight value. Finally, voting techniques applied for classifying the new network data based on each cluster's classification result. The performance of the proposed algorithm tested by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves the detection rates as well as reduces the false positives for different types of network intrusions.
AbstractList This paper presents a learning algorithm for adaptive network intrusion detection based on clustering and naïve Bayesian classifier, which induces a hybridization of unsupervised and supervised learning processes. The proposed approach scales up the balance detection rates for different types of network intrusions, and keeps the false positives at acceptable level in network intrusion detection. The algorithm first clusters the network logs into several groups based on similarity of network logs, and then calculates the prior and class conditional probabilities for each cluster. In classifying a new network log, the algorithm calculates the similarity of attribute values of network data with each cluster and initialize a weight value for each cluster. Then each cluster classifies the network data with its priori and conditional probabilities that multiply with respective cluster's weight value. Finally, voting techniques applied for classifying the new network data based on each cluster's classification result. The performance of the proposed algorithm tested by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves the detection rates as well as reduces the false positives for different types of network intrusions.
Author Uddin, Mohammad Shorif
Abu Afza, A. J. M.
Author_xml – sequence: 1
  givenname: A. J. M.
  surname: Abu Afza
  fullname: Abu Afza, A. J. M.
  email: afza22bd@gmail.com
  organization: Department of Computer Science and Engineering Jahangirnagar University, Dhaka, Bangladesh
– sequence: 2
  givenname: Mohammad Shorif
  surname: Uddin
  fullname: Uddin, Mohammad Shorif
  email: shorifuddin@gmail.com
  organization: Department of Computer Science and Engineering Jahangirnagar University, Dhaka, Bangladesh
BookMark eNotj1FLwzAUhSPog879AmH0D7Tm5rZJ7oMPUtQVBr70fWRt0oa1qWQZ4r_X4Z7O4ePwwXlgt2EJlrEN8AKA03NT101ruzEUgkNZSCKForxha1IaSkWE5R-5Zy9NSPF88kvIeptsly5tsiYGH4bMTMMSfRrnLI1xOQ9jFmz6XuIxm_1l8MjunJlOdn3NFWvf39p6m-8-P5r6dZd74imXhlBKXnKqDlppZUBwZ3qn0GnUFRA5CVpVotPSHFA4wMqBUB0iCKt6XLGnf6231u6_op9N_NlfP-Ev5IBHFA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCITechn.2014.6997324
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479934973
1479934976
EndPage 495
ExternalDocumentID 6997324
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-6a936604095b8787a120fadf73f8385199f618752c86ab32f135f127c3312e7d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:08 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6a936604095b8787a120fadf73f8385199f618752c86ab32f135f127c3312e7d3
PageCount 6
ParticipantIDs ieee_primary_6997324
PublicationCentury 2000
PublicationDate 2014-March
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-March
PublicationDecade 2010
PublicationTitle 16th Int'l Conf. Computer and Information Technology
PublicationTitleAbbrev ICCITechn
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5751173
Snippet This paper presents a learning algorithm for adaptive network intrusion detection based on clustering and naïve Bayesian classifier, which induces a...
SourceID ieee
SourceType Publisher
StartPage 490
SubjectTerms Bayes methods
boosting
Classification algorithms
Clustering algorithms
Computers
Intrusion detection
naïve Bayesian classifier
Niobium
Title Intrusion detection learning algorithm through network mining
URI https://ieeexplore.ieee.org/document/6997324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL1qOzEBahFveWAkqWM7fswVqEUqYihSt8p27FJBU1SlC1-PnYQiEANbZEWyrx86zs059wDcaBxQj3GaZAXGCfOSJQYTk3jtuRS2wJZEgfP0kY-f2cM8n3fgdq-Fcc7V5DOXxsf6X36xsbuYKhtyFWvLsC50wzZrtFqt6DfDajgZjSZ1PjoStljavvzDNaUGjftDmH5113BFXtNdZVL78asS43_HcwSDb3keetoDzzF0XNmHSB_c7mLuCxWuqglWJWo9IZZIvy0321X1skatMQ8qG_43WtcOEQOY3d_NRuOk9UZIVgpXCdeKch4OoMqNDJOhM4K9LrygXtJwiVLK8yx8ihAruTaU-IzmPiPCUpoRJwp6Ar1yU7pTQIQZ7wLKe25zZgQ2XBVOaGmck1pQfgb9GPnival-sWiDPv-7-QIO4uw3LK1L6IXI3VWA7cpc1-v1CeatmnE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP2CeNCTGjD-tgePdnRt161nIgEF4gETbqTdWiTKIGRc_Ottt4nRePDWNE36K81rv773PYA7RRzqccFwmBGCuU041oRqbJUVSZxmJKVe4Dwai_4Lf5xG0wbc77QwxpiSfGYCXyz_8rNVuvWhso6QPrcM34N9h_s8qtRatew3JLIz6HYHZUTaU7Z4UDf_4ZtSwkbvCEZfHVZskbdgW-gg_fiVi_G_IzqG9rdADz3voOcEGiZvgScQbrY--oUyU5QUqxzVrhBzpN7nq82ieF2i2poH5RUDHC1Lj4g2THoPk24f1-4IeCFJgYWSTAh3BGWkE3fqVEiJVZmNmU2Yu0ZJaUXoHiM0TYTSjNqQRTakccpYSE2csVNo5qvcnAGiXFvjcN6KNOI6JlrIzMQq0cYkKmbiHFp-5rN1lf9iVk_64u_qWzjoT0bD2XAwfrqEQ78TFWfrCppuFcy1A_FC35R79wktV52-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=16th+Int%27l+Conf.+Computer+and+Information+Technology&rft.atitle=Intrusion+detection+learning+algorithm+through+network+mining&rft.au=Abu+Afza%2C+A.+J.+M.&rft.au=Uddin%2C+Mohammad+Shorif&rft.date=2014-03-01&rft.pub=IEEE&rft.spage=490&rft.epage=495&rft_id=info:doi/10.1109%2FICCITechn.2014.6997324&rft.externalDocID=6997324