Spatial discriminant ICA for RS-fMRI characterisation

Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first...

Full description

Saved in:
Bibliographic Details
Published in2014 International Workshop on Pattern Recognition in Neuroimaging pp. 1 - 4
Main Authors Tabas, Alejandro, Balaguer-Ballester, Emili, Igual, Laura
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first, all connectivity patterns in the data are extracted by means of Independent Component Analysis (ICA); second, standard statistical tests are performed over the extracted patterns to find differences between control and clinical groups. In this work we introduce a novel, single-step, approach for this problem termed Spatial Discriminant ICA. The algorithm can efficiently isolate networks of functional connectivity characterising a clinical group by combining ICA and a new variant of the Fisher's Linear Discriminant also introduced in this work. As the characterisation is carried out in a single step, it potentially provides for a richer characterisation of inter-class differences. The algorithm is tested using synthetic and real fMRI data, showing promising results in both experiments.
AbstractList Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first, all connectivity patterns in the data are extracted by means of Independent Component Analysis (ICA); second, standard statistical tests are performed over the extracted patterns to find differences between control and clinical groups. In this work we introduce a novel, single-step, approach for this problem termed Spatial Discriminant ICA. The algorithm can efficiently isolate networks of functional connectivity characterising a clinical group by combining ICA and a new variant of the Fisher's Linear Discriminant also introduced in this work. As the characterisation is carried out in a single step, it potentially provides for a richer characterisation of inter-class differences. The algorithm is tested using synthetic and real fMRI data, showing promising results in both experiments.
Author Balaguer-Ballester, Emili
Igual, Laura
Tabas, Alejandro
Author_xml – sequence: 1
  givenname: Alejandro
  surname: Tabas
  fullname: Tabas, Alejandro
  email: atabas@bournemouth.ac.uk
– sequence: 2
  givenname: Emili
  surname: Balaguer-Ballester
  fullname: Balaguer-Ballester, Emili
  email: eb-ballester@bournemouth.ac.uk
– sequence: 3
  givenname: Laura
  surname: Igual
  fullname: Igual, Laura
  email: ligual@ub.edu
BookMark eNotj8tOwzAURI0ECyj9AMTGP5Bw_baXqOIRqQWUdl_dOLawVJzKyYa_xxJdzSzmjGbuyHWeciDkgUHLGLinr_6jazkw2WqrrJL6iqydsUwa5ySTDm6J2p9xSXiiY5p9ST8pY15ot3mmcSq03zdx13fUf2NBv4SS5pqe8j25iXiaw_qiK3J4fTls3pvt51tlt01ysDTaSgTJhQblgmG6msFya0IIdvTARxH94IQadDCRg0Cjo0aJ0jMmohNiRR7_a1NFjuc6D8vv8fJF_AGknUE-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PRNI.2014.6858546
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479941490
9781479941506
1479941506
1479941492
EndPage 4
ExternalDocumentID 6858546
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-684a04236059e716360b8287eee8dc02d3fcb935b6e7f203a76f6a4a4c113f933
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-684a04236059e716360b8287eee8dc02d3fcb935b6e7f203a76f6a4a4c113f933
PageCount 4
ParticipantIDs ieee_primary_6858546
PublicationCentury 2000
PublicationDate 2014-June
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-June
PublicationDecade 2010
PublicationTitle 2014 International Workshop on Pattern Recognition in Neuroimaging
PublicationTitleAbbrev PRNI
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5645719
Snippet Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Algorithm design and analysis
Brain
Computer architecture
Data mining
Independent component analysis
Noise
Title Spatial discriminant ICA for RS-fMRI characterisation
URI https://ieeexplore.ieee.org/document/6858546
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdGmTps1RhmMTNsacsNtomxcQoRPpLv71vrR1Q_HgLYRCk5eS972-930P4M5hQig5MhwLgm8qE4YbtIa7yKKwoTOZ8uTk2VxPXtTTOl534H7PhUHEuvgMAz-sc_l2W-z8r7JhrZWudBe6FLg1XK02URkKM1ws51Nfq6WC9rkfDVNqfzE-htn3m5oykbdgV-VB8flLhPG_SzmBwYGZxxZ7n3MKHSz7EPu-wvQdMU-xbdp0lRWbjh4YIVK2fOZutpyy4iDNXJ_GAFbjx9Vowtt2CPzViIrrlCxJ4IfiD4MU5dAg92r1tLTUFiKy0hW5kXGuMXGRkFminc4U2ToMpTNSnkGv3JZ4DsyJOFIpOuWTkMbKTCeEalJrNBpLl_cF9P2ON--N4MWm3ezl39NXcOSt3tRPXUOv-tjhDXnqKr-tj-gLWuWUbw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB2qHvSk0orf5uDRTZPsZpM9SrE02pRSK_RWkuwsiJCKpBd_vbNJbFE8eFtCYGd3lszbzLw3ALcGI0LJgWJYEHwTmaeYQq2YCTR62jcqE5acnE7k6EU8LsJFB-42XBhErIvP0LXDOpevV8Xa_irr11rpQu7AHsX90G_YWm2q0vdUfzqbJLZaS7jtmz9aptQRY3gI6fdcTaHIm7uucrf4_CXD-F9jjqC35eY5003UOYYOll0IbWdhOkmOJdk2jbrKykkG9w5hUmf2zEw6S5xiK85c-6MH8-HDfDBibUME9qq8ismY9pLgD91AFNI9hwa51asn02JdeIHmpsgVD3OJkQk8nkXSyEzQbvs-N4rzE9gtVyWegmO8MBAxGmHTkErzTEaEa2KtJCpNn-8z6NoVL98byYtlu9jzvx_fwP5ono6X42TydAEH1gNNNdUl7FYfa7yiuF3l17W7vgBOVJe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Workshop+on+Pattern+Recognition+in+Neuroimaging&rft.atitle=Spatial+discriminant+ICA+for+RS-fMRI+characterisation&rft.au=Tabas%2C+Alejandro&rft.au=Balaguer-Ballester%2C+Emili&rft.au=Igual%2C+Laura&rft.date=2014-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FPRNI.2014.6858546&rft.externalDocID=6858546