Prediction of building lighting energy consumption based on support vector regression

Prediction of energy consumption is an important task in energy conservation. Due to support vector regression has good performance in dealing with non-linear data regression problem, in recent years it often was used to predict building energy consumption. Based on the historical data we conclude t...

Full description

Saved in:
Bibliographic Details
Published in2013 9th Asian Control Conference (ASCC) pp. 1 - 5
Main Authors Dandan Liu, Qijun Chen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text
ISBN9781467357678
1467357677
DOI10.1109/ASCC.2013.6606376

Cover

Loading…
Abstract Prediction of energy consumption is an important task in energy conservation. Due to support vector regression has good performance in dealing with non-linear data regression problem, in recent years it often was used to predict building energy consumption. Based on the historical data we conclude the relationship between lighting energy consumption and its influencing factors is non-linear. To develop accurate prediction model of lighting energy consumption, the support vector regression with radial basis function was applied. The forecast results indicate that the prediction accuracy of support vector regression is higher than neural networks. The prediction model can forecast the building hourly energy consumption and assess the impact of office building energy management plans.
AbstractList Prediction of energy consumption is an important task in energy conservation. Due to support vector regression has good performance in dealing with non-linear data regression problem, in recent years it often was used to predict building energy consumption. Based on the historical data we conclude the relationship between lighting energy consumption and its influencing factors is non-linear. To develop accurate prediction model of lighting energy consumption, the support vector regression with radial basis function was applied. The forecast results indicate that the prediction accuracy of support vector regression is higher than neural networks. The prediction model can forecast the building hourly energy consumption and assess the impact of office building energy management plans.
Author Dandan Liu
Qijun Chen
Author_xml – sequence: 1
  surname: Dandan Liu
  fullname: Dandan Liu
  organization: Sch. of Electron. & Inf., Tongji Univ., Shanghai, China
– sequence: 2
  surname: Qijun Chen
  fullname: Qijun Chen
  email: qjchen@mail.tongji.edu.cn
  organization: Sch. of Electron. & Inf., Tongji Univ., Shanghai, China
BookMark eNo1j11LwzAYhSPqhZv7AeJN_kBrPtqkuRxFnTBQcF6P5s3bGuiSkrbC_r1T59V5DjwcOAtyFWJAQu44yzln5mH9Xte5YFzmSjEltbogC14oLUutjLwkK6Or_66rG_LxltB5mHwMNLbUzr53PnS0993n9AMYMHVHCjGM82H49WwzoqMnGOdhiGmiXwhTTDRhl3AcT8otuW6bfsTVOZdk9_S4qzfZ9vX5pV5vM2_YlCkh2qoChkYxMM5BCaWQXCMIZjUA01o6JtuCFVZBJcBY26DUhSpVi87JJbn_m_WIuB-SPzTpuD8fl98D4lHW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASCC.2013.6606376
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467357693
9781467357692
EndPage 5
ExternalDocumentID 6606376
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-622f88c0e960c9ddc5c52317ec20b7cc0773d03f404b6c82c9bbae374656fedd3
IEDL.DBID RIE
ISBN 9781467357678
1467357677
IngestDate Wed Jun 26 19:24:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-622f88c0e960c9ddc5c52317ec20b7cc0773d03f404b6c82c9bbae374656fedd3
PageCount 5
ParticipantIDs ieee_primary_6606376
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 9th Asian Control Conference (ASCC)
PublicationTitleAbbrev ASCC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5752928
Snippet Prediction of energy consumption is an important task in energy conservation. Due to support vector regression has good performance in dealing with non-linear...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
building
Buildings
Energy consumption
Lighting
lighting energy consumption
prediction
Predictive models
Support vector machines
support vector regression
Training
Title Prediction of building lighting energy consumption based on support vector regression
URI https://ieeexplore.ieee.org/document/6606376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhJ6sRObI-ooqqQiirRSt2q-GwjBEqrkjDw67GdtHyIge2SIbIuSu69u3t3CF0XUjFhWRYlCnTEUuCRko64Cgm0sHmRAfg85OQhH8_Z_SJbdNDNTgtjjAnNZyb2Zqjl6xXUPlU2yB3adh_EHtpzxO2bVivn1MFmzrcjnNpr0VYxEyIHt4_DoW_konH7kB_bVEIwGR2gyfYYTQ_JS1xXKoaPXxMa_3vOQ9T_ku3h6S4gHaGOKXtoPt34Woz3P15ZrNo12PjVs3JvmKD-wxC0mOEHgn1o09gZb_Xa43P8HnL7eGOemrbZso9mo7vZcBy1uxSiZ0mqKE9TKwQQ4wgLSK0hA8dAE24gJYoDEM6pJtQywlQOIgWpVGEo99PUrNGaHqNuuSrNCcKZFNwwh1OAEsZSqxyABEFJUXCrnNtPUc97ZLlupmUsW2ec_X37HO2nzYKJiCQXqFttanPpwnylrsL7_QTc9aeB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_DoRrd263o0RIIKhERIuJH1tTNGMwhuHvzrbbuBH_Hg7bWHpXlN9_u9b4SuUiFZkrHICyQoj4XAPSmM4ZoIoGkWpxGA9UMOR3F_yu5n0ayBrje1MFprl3ymfSu6WL5aQGldZZ3YsG3zILbQtsF9Jr5Va8WcGuLM-bqJU71O6jhmQETn5rHbtalc1K8_82OeioOT3h4arg9SZZG8-GUhffj41aPxvyfdR-2vwj083kDSAWrovIWm45WNxtgbwIsMy3oQNn61drkVtKv_w-CqMd0vBFtwU9gIb-XSMnT87rz7eKWfqsTZvI0mvdtJt-_V0xS8Z0EKLw7DLEmAaGOygFAKIjA2aMA1hERyAMI5VYRmjDAZQxKCkDLVlNt-aplWih6iZr7I9RHCkUi4ZoapACWMhZk0FBISStKUZ9Ko_Ri1rEbmy6pfxrxWxsnf25dopz8ZDuaDu9HDKdoNq3ETHgnOULNYlfrcgH4hL9xdfwLZgKrR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+9th+Asian+Control+Conference+%28ASCC%29&rft.atitle=Prediction+of+building+lighting+energy+consumption+based+on+support+vector+regression&rft.au=Dandan+Liu&rft.au=Qijun+Chen&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781467357678&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FASCC.2013.6606376&rft.externalDocID=6606376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357678/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357678/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467357678/sc.gif&client=summon&freeimage=true