Parallelizable sparse inverse formulation Gaussian processes (SpInGP)

We propose a parallelizable sparse inverse formulation Gaussian process (SpInGP) for temporal models. It uses a sparse precision GP formulation and sparse matrix routines to speed up the computations. Due to the state-space formulation used in the algorithm, the time complexity of the basic SpInGP i...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 6
Main Authors Grigorievskiy, Alexander, Lawrence, Neil, Sarkka, Simo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…